1. Количество трехзначных чисел, составленных из трех различных цифр из множества цифр 1, 2, 3, 4, 5, 6 и 7, равно количеству размещений без повторения 7 элементов по 3 позициям:
A(7, 3) = 7!/(7 - 3)! = 7!/4! = 7 * 6 * 5 = 210.
2. В общей формуле A(n, m) = n!/(n - m)!, отношение факториалов называется убывающим факториалом. В частном случае, при n = m получим число перестановок n элементов:
A(n, n) = n!/(n - n)! = n!/0! = n!
3. Аналогичный результат получим для размещений n элементов по (n - 1) позициям:
A(n, n - 1) = n!/(n - n + 1)! = n!/1! = n!
ответ. Количество трехзначных чисел: 210
Объяснение:
См. Объяснение.
Объяснение:
Чтобы найти значение выражение при заданном значении х, надо в это выражение вместо х подставить его значение.
Дано выражение:
2х + 8/(х+1).
1) если х = - 1/2, то данное выражение равно:
2 · (-1/2) + 8/(-1/2 +1) = -1 + 8/(1/2) = - 1 + 16 = 15;
2) если х = 0,5, то данное выражение равно:
2 · 0,5 + 8/(0,5+1) = 1 + 8/1,5 = 1 + 8/(3/2) = 1 + 16/3 = 1 + 5 1/3 = 6 1/3 ≈ 6,33;
3) если х = 1, то данное выражение равно:
2 · 1 + 8/(1+1) = 2 + 8/2 = 2 + 4 = 6;
4) если х = 3, то данное выражение равно:
2 · 3 + 8/(3+1) = 6 + 8/4 = 6 + 2 = 8.
Поделитесь своими знаниями, ответьте на вопрос:
1, 7 черта дроби 0, 5 х - 2 < 0 решите неравенство
0,5х-2>0
0,5x>2
x>4