zimin0082
?>

Найдите целые решения системы уравнений: 5(1-2х)< 2х-4 2, 5 + х/2 > (больше или равно) х

Алгебра

Ответы

ritckshulga20112

1) 5(1-2x)<2x-4

5-10x<2x-4

-10x-2x < -4-5

-12x < -9

x> -9/(-12)

x> 3/4

2) 2.5+x/2 ≥ x

x/2 - x ≥ -2.5

  -0.5x ≥ -2.5

     x ≤ -2.5/(-0,5)

     x≤ 5

3) {x>3/4

    {x≤5

х={1; 2; 3; 4; 5} - целые решения системы неравенств

ответ: {1; 2; 3; 4; 5}

shakhnina90

1. Здесь в условии опечатка, скорее всего в точке x₀ = -1.

Прямая y=x-2 касается графика функции y=f(x) в точке x₀ = -1, то эта точка является общей для обеих функций, тогда f(-1) = -1-2=-3


ответ: -3.


2. Производная функции f'(x)=(-2x^2+8x-3)'=-4x+8

f'(0)+f'(-1)=-4\cdot0+8-4\cdot(-1)+8=16


ответ: 16.


3. y'=\dfrac{(x)'\sqrt{x+1}+x(\sqrt{x+1})'}{(\sqrt{x+1})^2}=\dfrac{\sqrt{x+1}+x\cdot\frac{1}{2\sqrt{x+1}}}{x+1}=\dfrac{3x+2}{2(x+1)\sqrt{x+1}}


4. Производная функции: f'(x)=(2x^3-5x)'=6x^2-5

Используем геометрический смысл производной: f'(x₀) = tgα

tg\alpha=f'(2)=6\cdot2^2-5=19


ответ: 19.


5. f'(x)=(x^2-1)'(x^2+1)+(x^2-1)(x^2+1)'=2x(x^2+1)+2x(x^2-1)=\\ \\ =2x^3+2x+2x^3-2x=4x^3


6. f(x)=(1-2x)(2x+1)=(1-2x)(1+2x)=1-4x^2

Производная функции: f'(x)=(1-4x^2)'=-8x. Производная функции в точке 1, равна f'(1)=-8\cdot1=-8


7. Производная функции: f'(x) = 1/2√x, ее значение в точке х=1 равна 1/2. Тогда касательная: y = f'(x0)(x-x0) + f(x0) = 1/2 * (x-1) + 1 = x/2 + 1/2


y(31) = 31/2 + 1/2 = 32/2 = 16


ответ: 16.


8. f'(x)=(x^2)'+(\sqrt{x})'=2x+\dfrac{1}{2\sqrt{x}}

evsmorodina

1. Здесь в условии опечатка, скорее всего в точке x₀ = -1.

Прямая y=x-2 касается графика функции y=f(x) в точке x₀ = -1, то эта точка является общей для обеих функций, тогда f(-1) = -1-2=-3


ответ: -3.


2. Производная функции f'(x)=(-2x^2+8x-3)'=-4x+8

f'(0)+f'(-1)=-4\cdot0+8-4\cdot(-1)+8=16


ответ: 16.


3. y'=\dfrac{(x)'\sqrt{x+1}+x(\sqrt{x+1})'}{(\sqrt{x+1})^2}=\dfrac{\sqrt{x+1}+x\cdot\frac{1}{2\sqrt{x+1}}}{x+1}=\dfrac{3x+2}{2(x+1)\sqrt{x+1}}


4. Производная функции: f'(x)=(2x^3-5x)'=6x^2-5

Используем геометрический смысл производной: f'(x₀) = tgα

tg\alpha=f'(2)=6\cdot2^2-5=19


ответ: 19.


5. f'(x)=(x^2-1)'(x^2+1)+(x^2-1)(x^2+1)'=2x(x^2+1)+2x(x^2-1)=\\ \\ =2x^3+2x+2x^3-2x=4x^3


6. f(x)=(1-2x)(2x+1)=(1-2x)(1+2x)=1-4x^2

Производная функции: f'(x)=(1-4x^2)'=-8x. Производная функции в точке 1, равна f'(1)=-8\cdot1=-8


7. Производная функции: f'(x) = 1/2√x, ее значение в точке х=1 равна 1/2. Тогда касательная: y = f'(x0)(x-x0) + f(x0) = 1/2 * (x-1) + 1 = x/2 + 1/2


y(31) = 31/2 + 1/2 = 32/2 = 16


ответ: 16.


8. f'(x)=(x^2)'+(\sqrt{x})'=2x+\dfrac{1}{2\sqrt{x}}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите целые решения системы уравнений: 5(1-2х)< 2х-4 2, 5 + х/2 > (больше или равно) х
Ваше имя (никнейм)*
Email*
Комментарий*