Чтобы найти точки пересечения надо приравнять правые части уравнений 2-2х=-х -2х+х=-2 -х=-2 х=2 если х=2, то у=-х значит у=-2 точка пересечения А(2;-2)
evsyukov1997
19.06.2021
Проведем отрезок ОС. Он разделит четырехгранник CAOB на два равных прямоугольных треугольника AOC=BOC. Треугольники равны, т.к.сторона OC-общая, AO=BO=Rокружности и угол CAO=углу CBO=90градусов, т.к. радиус проведенный к точке касания образует перпендикуляр к касательной линии. Из равенства треугольников следует равенство углов ACO=BCO. Эти два угла равны, а в сумме они образуют угол C, который равен 18 градусам. Значит угол ACO=BCO=9градусов. Оставшиеся углы AOC и BOC будут равны 180-90-9=81градусу. Угол АОB состоит из углов: AOC и BOC, которые равны между собой, а их значение мы вычислили выше. Значит угол AOB=2*81=162градуса
2-2х=-х
-2х+х=-2
-х=-2
х=2
если х=2, то у=-х значит у=-2
точка пересечения А(2;-2)