ответ 1.находим производное функции: у(штрих)=4-2х
2.приравниваем его к нулю,т.е. 4-2х=0 и решим. х=2 - это точка экстремума,которая делит область определения
r на 2 интервала:
3.определяем знак производной в каждом интервале - можно по старшему коэффициенту.он равен -2 то есть в интервале от 2 до +бесконечности отрицательный,отсюда в этом интервале ф-я убывает. а в интервале от - бесконечности до 2 знак положительный. т.е. в этом интервале ф-я возрастает. х = 2 есть точка максимума.
4.
вычисляем: значение функции в точке х=0 т.е. у=4*0 - 0в2= 0 ; значение функции в точке х=3, т.е. у= 4*3- 3в2 = 3; значение в точке х=2, т.е. у = 4*2-2в2 = 4.
выбираем:
a) max y = 4 , a min y = 0
[0; 3] [0; 3]
б) возрастает на ( - бескон.; 2], а убывает на [2; бескон.)
в)решаем 4х - х2< 0 методом интервалов.
находим нули: х=0 и х=4.
- + -
ответ : (-беск.; 0) u (4; беск.)
Поделитесь своими знаниями, ответьте на вопрос:
Решить уравнение : 4 в степени х минус 3 в степени х-0.5= 3 в степени х+0.5 - 2 в степени 2х-1
2^2x-3^(x+0,5)=3^(x-0.5)-2^(2x-1)
2^2x+2^(2x-1)=3^(x-0.5)+3^(x+0,5)
2^(2x-1)*3=3^(x-0.5)*4
2^(2x-1)/3^(x-0.5)=4/3
2x-1=2 x=1,5
x-0.5=1