Яковчук1911
?>

2401 это какое число в 3 степени скажите

Алгебра

Ответы

Konstantinovna Ilyukhin1618
Точно 2401?
просто 13^3=2197
а 14^3=2744
Ka-shop2791

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

ivanjeka87
1) Положим что 7 это один из катетов, тогда 5 либо второй катет (высота) или высота проведенная к гипотенузе, пусть 5 это высота к гипотенузе и b второй катет, тогда высота равна 7b/√(b^2+49)=5 , откуда b=35/√24 то есть  такой катет существует, значит для первого случая возможны два варианта , это треугольники (катет,катет,гипотенуза)=(5,7,√74)  и (7,35/√24,49/√24)  
 
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к  гипотенузе, пусть a,b тогда катеты , откуда  ab/7=5 и a^2+b^2=49 
ab=35 
a^2+b^2=49 

a=35/b  
откуда  b^4-49b^2+1225=0   
 D<0 
то есть не существует такого треугольника 

 Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

2401 это какое число в 3 степени скажите
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Angelina1139
Nertman45
daverkieva568
Galliardt Sergeevna1284
Sin 2 п/3 минус cos (-п/6)плюс tg п/4
Drugov_Vladimirovna
BelozerovaGeller648
irinabaranova2760
nzagrebin363
Anatolevich1506
ivanpetrovichru1801
burylin9
nataljatchetvertnova
lebedev815
Sharap
oksana77768