Объяснение: Точки А, В, С лежат на ожной прямой. Найти а.
1) А(1;2), В(4;8), С(а;6)
Составим уравнение прямой АВ:
(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁), ⇒ (х-1)/(4-1)=(у-2)/8-2), ⇒ (х-1)/3=(у-2)/6 ⇒6(х-1)=3(у-2), ⇒ 6х-6=3у-6, т.е. 6х=3у или у=2х (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки С(а;6) удовлетворяют этому уравнению: 6=2·а, ⇒а=6:2=3, т.е. а=3
2) А(2;5), В(-1;а), С(3;7).
Аналогично составим уравнение прямой АС:
(х-2)/(3-2)=(у-5)/(7-5), ⇒х-2=(у-5)/2 ⇒2х-4=у-5 ⇒у=2х+1 (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки В(-1;а) удовлетворяют этому уравнению: а=2·(-1)+1 =-1, т.е. а= -1
3) А(0;2), В(1;а), С(а;5)
Аналогично составим уравнение прямой АС: (х-0)/(а-0)=(у-2)/(5-2) ⇒
х/а=(у-2)/3 ⇒3х=а(у-2) ⇒ 3х=ау-2а ⇒ау=3х+2а ⇒у=3х/а +2 (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки В(1;а) удовлетворяют этому уравнению: а= 3·1/а+2 ⇒а²=2а+3 ⇒
а²-2а-3 =0 ⇒ D=4+12=16 >0 ⇒a₁= (2+4)/2=3, a₂=(2-4)/2=-1
т.е. при а=-1 и а=3
α∈(0°45°)
1) а) sin 72°=sin(90°-18°)=cos18°; т.к. по формуле приведения
sin(90°-α)=cosα
б) cos 71°=cos(90°-19°)=sin19°;
т.к. по формуле приведения
cos(90°-α)=sinα
2) a) sin 175°=sin (180°-5°)= sin5°; т.к. по формуле приведения
sin(180°-α)=sinα
б) cos 155°=cos(180°-25°)=-cos25°; т.к. по формуле приведения
cos(180°-α)=-cosα
3) a) sin 285°=sin (270°+15°)=-cos15°; т.к. по формуле приведения
sin(270°+α)=-cosα
б) cos 273=cos (270°+3°)=sin3°; т.к. по формуле приведения
cos(270°+α)=sinα
4) a) sin (-355°)=-sin355°=-sin(360°-5°)=sin5°; т.к. по формуле приведения
sin(360°-α)=-sinα, и функция синуса есть нечетная функция.
б) cos (-451°)=cos451°=cos(360+91°)=cos91°=cos(90°+1°)=-sin1° ;
т.к. по формуле приведения
cos(90°+α)=-sinα и функция косинуса есть четная функция.
в) tg65°= tg(90°-35°)=сtg35°; т.к. по формуле приведения
tg(90°-α)=ctgα
в) tg 102°= tg(90°+12°)=-сtg12°, т.к. по формуле приведения
tg(90°+α)=-ctgα
в) tg 250°=tg(270°-20°)=ctg20°;
т.к. по формуле приведения
tg(170°-α)=ctgα
в) tg (-317°)=-tg (360°-43°)=tg43°, т.к. по формуле приведения
tg(360°-α)=-tgα, и функция тангенса есть нечетная.
Дополнение. Функция наз. четной, если область ее определения симметрична относительно нуля и у(-х)=у(х); функция наз. нечетной, если область ее определения симметрична относительно нуля и
у(-х)=-у(х);
формулы приведения позволяют приводить функции тупого угла к функциям острого угла.
Поделитесь своими знаниями, ответьте на вопрос:
Укажите целые числа расположенные на координатной прямой между числами корень из 2 и корень из 10