arturo95
?>

Решите уравнение: (х-5)в квадрате = 3х в квадрате -х+14 2) 2)9х(4х-1)= 3х-1

Алгебра

Ответы

gk230650
Х2-10x+25=3x2-x+14
x2-10x+25-3x2+x-14=0
-2x-9x+11=0 |* -1
2x+9x-11=0
D=81+88=169=13
x1,2=(-9+-13)/4= 5,5 и 1
х1=5,5
х2=1

9x(4x-1)=3x-1
36x-12x+1=0
D= 144-144= 0
x1=0
dfyurst708
Дана функция у = (-1/3)x^3+x^2.
1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет.
2-Выяснить является ли чётной или нечётной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
 f(-x) = (-1/3)x³ + x²  = (1/3)x³ + x² 
- Нет
 -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² 
- Нет, значит, функция не является ни чётной, ни нечётной.
3-определить точки пересечения функции с координатными осями .
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(-1/3)x³+ x² = 0.
-x³ + 3x² = 0.
-x²(x-3) = 0.
Имеем 2 корня: х = 0 и х = 3.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в y = (-1/3)x^3 +x^2.
y = (-1/3)0³+0² = 0. Точка: (0, 0) 
4-найти критические точки функции.
Находим производную и приравниваем её нулю:
y' = -x²+2x = -x(x-2).
Имеем 2 критические точки: х = 0 и х = 2.
5-определить промежутки монотонности 
(возрастания,убывания).
Исследуем поведение производной вблизи критических точек.
х =                -0.5    0    0.5      1.5     2     2.5
y'=-x^2+2x   -1.25    0   0.75    0.75    0   -1.25
Где производная отрицательна - функция убывает, где положительна - функция возрастает.
Возрастает на промежутке
[0, 2]
Убывает на промежутках
(-oo, 0] U [2, oo)
6-определить точки экстремума.
Они уже найдены: это 2 критические точки: х = 0 и х = 2.
Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции.
Минимум функции в точке: x = 0,
Максимум функции в точке: х = 2.
7 -определить максимальное и минимальное значение функции.
Значения функции в экстремальных точках:
х = 2, у = (-1/3)*2³+2² = -8/3 + 4  = 4/3,
х = 0, у = 0.
8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
d2/dx2f(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
d2/dx2f(x)= -2х + 2 =-2(x−1)=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 1]
Выпуклая на промежутках
[1, oo)

Иследуйте функцию и постройте график: f (x)=-1/3x^3+x^2
Allahverdi_Мария475
Для первой прогрессии
a_1=2;a_=7;a_3=12
d=a_2-a_1=7-2=5
a_n=a_1+(n-1)*d=2+5(n-1)=2+5n-5=5n-3

для второй прогрессии
A_1=3;A_2=10;A_3=17
D=A_2-A_1=10-3=7
A_k=A_1+(k-1)*D=3+7(k-1)=7k-7+3=7k-4

5n-3=7k-4
7k-5n=1
нужно решить диофантовое уравнение от двух переменных в натуральных числаъ
получим
простым перебором находим "минимальное" решение в натуральных числах
7*3-5*4=1
k_0=3;n_0=4
k=3+5l
n=4+7l
где l є N \cup {0}

тогда формула искомых чисех
a_n=5*(4+7l)-3=20+35l-3=17+35l
A_n=7*(3+5l)-4=21+35l-4=17+35l
где l є N \cup {0}[/tex]
первый член равен
L_1=17+35*0=17
50-й член равен
L_{50}=17+35*(50-1)=1732
Сумма первых 50-ти равна
S=\frac{L_1+L_{50}}{2}*50=\frac{17+1732}{2}*50=43725
\frac{S}{100}=\frac{43725}{100}=437.25
----
более просто можно было на первых членах проследить появление первого члена 17 и заметить что разность последовательности образованной с двух данных тоже является арифмитической прогрессией с разностью равной 35

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение: (х-5)в квадрате = 3х в квадрате -х+14 2) 2)9х(4х-1)= 3х-1
Ваше имя (никнейм)*
Email*
Комментарий*