1 пересыпание: Кладём гирю (8кг) и мешок (50кг) на 1-ую чашу весов и из мешка (50кг) уравновешиваем весы. Получаем на весах гирю (8кг) + мешок (21кг) = мешок (29кг).
2 пересыпание: Кладём мешок (29кг) на 1-ую чашу весов и гирю (8кг) на 2-ую чашу весов, после этого из мешка (29кг) отвешиваем мешок (8кг). Получаем в стороне мешок (21кг) и на весах мешок (8кг) = гирю (8кг).
3 пересыпание: Кладём мешок (8кг) на 1-ую чашу весов и уравновешиваем весы. Получаем мешок (4кг) = мешок (4кг).
4 пересыпание: Кладём мешок (4кг) на 1-ую чашу весов и уравновешиваем весы. Получаем мешок (2кг) = мешок (2кг).
5 пересыпание: Кладём мешок (2кг) на 1-ую чашу весов и уравновешиваем. Получаем мешок (1кг) = мешок (1кг).
Кладём в ответ мешок (21кг) и мешок (1кг).
lele52
18.04.2023
Решение 1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2. Найдём r = (√3*√3)/2 = 3/2 = 1,5 По теореме Пифагора находим апофему пирамиды: l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5 ответ: 2,5 2) По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала момента будет (t -5) мин. Решим неравенство: 120 * 2^(-(t - 5)/12) ≤ 7,5 2^(-(t - 5)/12) ≤ 7,5/120 2^(-(t - 5)/12) ≤ 0,0625 2^(-(t - 5)/12) ≤ 2⁻⁴ -(t - 5) / 12 ≤ - 4 t - 5 ≤ 4*12 t ≤ 48 + 5 t ≤ 53 (мин) ответ: t ≤ 53 (мин)
-3х-5х=-4-9+25
-8х=12
х=-1,5