akopsiroyan
?>

Решите неравенство -15/(х+1)^2-3≥0 (-з в знаменателе)

Алгебра

Ответы

westgti77105
\frac{-15}{(x+1)^2-3} \geq 0
Дробь положительна, если числитель и знаменатель имеют одинаковые знаки. Так как -15 < 0, то
(x + 1)^2 - 3 < 0
(x + 1)^2 < 3
-√3 < x + 1 < √3
x ∈ (-1 - √3; -1 + √3)
shhelina
-15/(((х+1)^2)-3)≥0 
ОДЗ: (x+1)^2-3≠0
          (x+1)^2≠3
          x+1≠√3
          x≠√3-1
          x+1≠-√3
          x≠-√3-1
           (x+1)^2-3<0
            x<√3-1
            x>-√3-1
x∈(-√3-1;√3-1)





         
    
Marina281

-6,7059

Объяснение:

y=2x-ln(x+4)^2

Сначала находим производную нашей функции

y'=2-\frac{1}{(x+4)^2}

Затем приводим функцию к нулю, превратив его в уравнение

2-\frac{1}{(x+4)^2} =0

Область допустимых значений (ОДЗ) нашего уравнения ровна

x+4\neq 0\\x\neq -4

Упрощаем уравнение, домножив обе части на -(x+4)^2

Получаем 1=-2*(-(x+4)^2)\\1=2(x+4)^2

Упростим уравнение (x+4)^2=\frac{1}{2}

Возведем обе части под корень, чтоб избавиться от квадрата

\left \{ {{x+4=\sqrt{\frac{1}{2} } } \atop {x+4=-\sqrt{\frac{1}{2} } }} \right.\\\left \{ {{x+4=\frac{\sqrt{2} }{2} } \atop {x+4=-\frac{\sqrt{2} }{2} }} \right. \\\left \{ {{x=\frac{\sqrt{2} }{2}-4 } \atop {x=-\frac{\sqrt{2} }{2}-4 }} \right. \\

x≈ -3.29 и x≈-4.70

Делаем проверку ОДЗ

-3.29\neq -4\\ -4.70\neq -4

Оба выражения верны, следовательно чертим числовую прямую

\\\\\\\\\\\\\\\\\\\\\\\\\•\\\\\\\\\\\\•ххххххххх•ххххххх•////////////////////////////→

                         -4.70      -3.5           -3.29          0

Нам подходит только x≈-3.29

Теперь в саму функцию подставляем x

y(\frac{\sqrt{2} }{2}-4)=2*( \frac{\sqrt{2} }{2}-4)-ln(\frac{\sqrt{2} }{2}-4)^2\\y(\frac{\sqrt{2} }{2}-4)=\sqrt{2} -8-\frac{ln(2)^2}{4} \\

y(\frac{\sqrt{2} }{2} -4)-6.7059

ответ: Наибольшее значение функции y=2x-ln(x+4)^2 на отрезке [-3,5;0] равно -6,7059

Жуков219
Пусть мы имеем неравенство с двумя переменными одного из следующих видов:y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:1. Строим график функции y = f(x), который разбивает плоскость на две области.2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией.
ну вообще это основное, а там уже смотри по заданию как))

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите неравенство -15/(х+1)^2-3≥0 (-з в знаменателе)
Ваше имя (никнейм)*
Email*
Комментарий*