Станиславович1830
?>

Как решить квадратичные уравнения x в квадрате-4=0 -x в квадрате +6x-5=0 3x в квадрате -6x+11=0 графическим

Алгебра

Ответы

muz-cd
Как решить квадратичные уравнения x в квадрате-4=0 -x в квадрате +6x-5=0 3x в квадрате -6x+11=0 граф
kotocafe45
х² - 3х + у²+ 3 > 0; поскольку число у, возведенное в квадрат больше (или равно при у=0) нуля, то есть число положительное при всех у, то рассмотрим неравенство: х² - 3х + 3 > 0; если оно будет верно, то и верно исходное неравенство х² - 3х + у²+ 3 > 0 x² − 3x + 3 > 0 Сначала решаем квадратное уравнение x² − 3x + 3 = 0. Вот коэффициенты данного квадратного уравнения: a = 1, b = − 3, c = 3. Его дискриминант D = b² − 4ac = (− 3) ² − 4 · 1 · 3 = − 3 Поскольку дискриминант D квадратного уравнения меньше 0, то уравнение не имеет действительных корней, и при любом x левая часть будет либо больше, либо меньше нуля; если a > 0, то при любом х всё выражение будет больше нуля; если a < 0, то при любом х всё выражение будет меньше нуля. В нашем уравнении a=1; > 0, поэтому выражение x² − 3x + 3 всегда будет больше нуля при любом x. Следовательно, наше неравенство x² − 3x + 3 > 0 верно при любом x.
АнтонАртем
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 1)^2*(x + 2) = 0 
(x - 1)^2 = 0 
x - 1 = 0 
x = 1 

x + 2 = 0 
x = - 2

2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1 
x₁ = 1 
x₂= - 1;

x - 3 = 0 
x₃ = 3 

3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0 
x = 4 

x - 3 = 0
x = 3 

4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0

x^2 = 4 
x₁ = 2;
x₂ = - 2

x + 1 = 0 
x₃ = - 1 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Как решить квадратичные уравнения x в квадрате-4=0 -x в квадрате +6x-5=0 3x в квадрате -6x+11=0 графическим
Ваше имя (никнейм)*
Email*
Комментарий*