Aleksandrova Zhanna1250
?>

При каком значении "a" вектора (1, 2, 3, a) (2, 4, 7, 1) (3, 6, 10, 5) линейно зависимы?

Алгебра

Ответы

maslprod
По определению линейной зависимости существует тройка чисел (x,y,z) не равная нулю, что
x+2y+3z=0
2x+4y+6z=0 - выкидываем
3x+7y+10z=0
ax+y+5z=0
имеет ненулевое решение. Система однородная, значит она имеет ненулевое решение когда определитель равен 0
|1  2   3|
|3  7 10|=4-a=0 => a=4
|a  1   5|
Melnik Kaveshnikova1746

0<у<24, 12<х<24, где х=АВ=ВС, у=АС

Объяснение:

Поскольку треугольник равнобедренный, то две стороны у него равны АВ=ВС. Пусть длина стороны АВ=х, длина стороны АС=у. Тогда периметр треугольника Р=х+х+у или 2х+у=48. Учитывая условие существования треугольника (сумма длин двух любых сторон больше длины третьей стороны), мы также получаем два неравенства 2х>у и х+у>х. Отсюда мы получаем множество решений, где длина основания треугольника может быть больше 0, но меньше 24, а длина бедра от 12 до 24 (не включая граничные значения)

Но я думаю, что какое-то условие Вы нам не дописали. :)

oksit

выпишем координаты данных векторов:

\vec{a}=(-1,0,5);\ \vec{b}=(-3,2,2);\ \vec{c}=(-2,-4,1)

a)

координаты:

3*\vec{a}=(3*(-1),3*0,3*5)=(-3,0,15)\\2*\vec{b}=(-6,4,4)

скалярное произведение векторов - число:

3\vec{a}*2\vec{b}=(-3)*(-6)+0*4+15*4=18+60=78

б)

координаты:

7*\vec{a}=(-7,0,35)\\(-3)*\vec{c}=(6,12,-3)

векторное произведение векторов - вектор, находим его координаты:

7\vec{a}\times (-3\vec{b})=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\-7 & 0 & 35 \\6 & 12 & -3\end{array}\right|=\vec{i}*\left|\begin{array}{cc}0 & 35 \\12 & -3\end{array}\right|-\vec{j}*\left|\begin{array}{cc}-7 & 35 \\6 & -3\end{array}\right|+\vec{k}*\left|\begin{array}{cc}-7 & 0 \\6 & 12\end{array}\right|=\vec{i}*(-12*35)-\vec{j}*(21-6*35)+\vec{k}*(12*(-7))=\\=-420\vec{i}+189\vec{j}-84*\vec{k}=(-420,189,-84)

находим модуль(длину) полученного вектора:

|7\vec{a}\times (-3\vec{b})|=\sqrt{420^2+189^2+84^2}=\sqrt{21^2(20^2+9^2+4^2)}=21\sqrt{497}

в)

координаты:

3\vec{a}=(-3,0,15)\\-4\vec{b}=(12,-8,-8)\\2\vec{c}=(-4,-8,2)

смешанное произведение векторов - число, находим его:

(3\vec{a},(-4\vec{b}),2\vec{c})=\left|\begin{array}{ccc}-3 & 0 & 15 \\12 & -8 & -8 \\-4 & -8 & 2\end{array}\right|=\\=-3*\left|\begin{array}{cc}-8 & -8 \\-8 & 2\end{array}\right|+15*\left|\begin{array}{cc}12 & -8 \\-4 & -8\end{array}\right|=-3(-16-64)+15(-96-32)=240-1920=-1680

г)

Координаты:

\vec{b}=(-3,2,2)\\\vec{c}=(-2,-4,1)

Векторы коллинеарны, если их соответствующие кординаты пропорциональны

Проверим это утверждение:

\frac{-3}{-2}\neq \frac{2}{-4}

Данное равенство неверно, значит векторы b и c не коллинеарны

Векторы ортогональны, если их скалярное произведение равно нулю.

Проверим это утверждение:

\vec{b}*\vec{c}=6-8+2=0

- верно, значит данные векторы ортогональны

Векторы b и c ортогональны

д)

Координаты:

7*\vec{a}=(-7,0,35)\\2*\vec{b}=(-6,4,4)\\(-3)*\vec{c}=(6,12,-3)

Три вектора компланарны, если их смешанное произведение равно нулю.

(7*\vec{a},2*\vec{b},(-3)*\vec{c})=\left|\begin{array}{ccc}-7 & 0 & 35 \\-6 & 4 & 4 \\6 & 12 & -3\end{array}\right|=-7*\left|\begin{array}{cc}4 & 4 \\12 & -3\end{array}\right|+35*\left|\begin{array}{cc}-6 & 4 \\6 & 12\end{array}\right|=-7(-12-48)+35*(-72-24)=420-3360=-2940

-2940 не равно нулю => данные векторы не компланарны.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каком значении "a" вектора (1, 2, 3, a) (2, 4, 7, 1) (3, 6, 10, 5) линейно зависимы?
Ваше имя (никнейм)*
Email*
Комментарий*