Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
для того, чтобы найти пересечение графика функции с осью OX, нужно приравнять y к 0.
1. 0 = 2x - 5 / x + 3
т. к. уравнение равно нулю, то: 2x - 5 = 0
2x = 5
x = 5/2 = 2,5
график пересекается с осью OX в точке с абсциссой 2,5
2. (x-4)(3x - 15) = 0
3x² - 27x + 60 = 0
решаем квадратное уравнение. получаем: x1 = 4, x2 = 5
и график функции пересекает ось OX в двух точках с абсциссами 4 и 5
3. 2x - 5x + 6 = 0
-3x + 6 = 0
3x - 6 = 0
3x = 6
x = 2
график пересекается с осью OX в точке с абсциссой 2
4. x³ - 7x² +12x = 0
x(x² - 7x + 12) = 0
x1 = 0
x² - 7x +12 = 0
решаем квадратное уравнение. получаем: x1 = 3, x2 = 4
график функции пересекается с осью OX в трех точках с абциссами 0, 3, 4.
Поделитесь своими знаниями, ответьте на вопрос:
)♥ постройте по точкам график зависимости: y=-