Найдем значение выражения (a ^ 2 - 1)/(5 * a ^ 2 + 5 * a) при а = - 2.
Для того, чтобы найти значение выражения (a ^ 2 - 1)/(5 * a ^ 2 + 5 * a), выражение сначала нужно у а затем подставить известное значение в само выражение и вычислить его значение. То есть получаем:
(a ^ 2 - 1)/(5 * a ^ 2 + 5 * a) = (a - 1) * (a + 1)/(5 * a * (a + 1));
Числитель и знаменатель в дроби в правой части выражения сокращаем на (a + 1), тогда получим:
(a - 1) * (a + 1)/(5 * a * (a + 1)) = (a - 1) * 1/(5 * a * 1) = (a - 1)/(5 * a) = (- 2 - 1)/(5 * (- 2)) = (- 3)/(- 5 * 2) = - 3/(- 10) = 3/10.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
На что делится значение выражения при всех целых n ? n(n++2)(n-4)
вынеси n+2 как общий вот и все