charlie79
?>

Решить тригонометрические уравнения : ) а) 6 cos^2+7sinx-8=0 б)2 sin^2+sinx*cosx-cosx^2=0

Алгебра

Ответы

vladexi

а)здесь заменим cos²x, на 1 - sin²x по основному тригонометрическому тождлеству. получаем:

6(1 - sin²x) + 7sin x - 8 = 0

6 - 6sin²x + 7sin x - 8 = 0

-6sin²x + 7sin x - 2 = 0

пусть sin x = t, причём |t| ≤ 1, тогда

-6t² + 7t - 2 = 0

6t² - 7t + 2 = 0

d = 49  - 48 = 1

t1 = (7 - 1) / 12 = 6/12 = 1/2

t2 = (7 + 1) / 12 = 8/12 = 2/3

приходим к совокупности двух уравнений:

sin x = 1/2                                                                    или                                                                                sin x = 2/3

x = (-1)^k * π/6 + πn ,n∈z                                                                                                              x = (-1)^k arcsin 2/3 + πk, k∈z

 

2)данное уравнение является однородным второй степени. будем решать его специальным образом. разделим всё уравнение на cos²x, но сначала обоснуем, почему мы имеем правда делить на него.

если бы cos² x был равен 0, то тогда при подставновке в уравнение получили бы соответственно

2sin²x + 0 - 0 = 0, то есть sin²x равен 0. но этого не может быть, так как противоречит основному тригонометрическому тожелдству. получили противоречие, следовательно, мы можем делить на cos²x. теперь сделаем это:

2tg²x + tg x - 1 = 0

  введём замену. пусть tg x = t, тогда

 

  2t² + t - 1 = 0

d = 1 + 8 = 9

t1 = (-1 - 3) / 4 = -4/4 = -1

t2 = (-1 + 3) / 4 = 2/4 = 1/2

приходим к совокупности уравнений:

tg x = -1                                                                        или                                                                  tg x = 1/2

x = -π/4 + πn, n∈z                                                             x = arctg 1/2 + πk, k∈z

это и есть корни данного уравнения.

 

 

 

 

borisov
Cos^2 (pi/8 - x) - cos^2 (pi/8 + x) = (cos pi/8*cos x + sin pi/8*sin x)^2 - (cos pi/8*cos x - sin pi/8*sin x)^2 =  = (cos^2 pi/8*cos^2 x + 2cos pi/8*cos x*sin pi/8*sin x + sin^2 pi/8*sin^2 x) -  - (cos^2 pi/8*cos^2 x - 2cos pi/8*cos x*sin pi/8*sin x + sin^2 pi/8*sin^2 x) =  = 4cos pi/8*cos x*sin pi/8*sin x = 2sin pi/8*cos pi/8 * 2sin x*cos x = sin pi/4 * sin 2x = v(2)/2 * sin 2x = 1/2  sin 2x = 1/v(2) = v(2)/2  2x1 = pi/4 + 2pi*n  2x2 = 3pi/4 + 2pi*n  x1 = pi/8 + pi*n  x2 = 3pi/8 + pi*n
mashiga2632
1)а   2) 5     3)х   4)   а+в     5)8       6)х+у     7)x²     8) 3a           9)4x-3y     -       -         -             -                                 7     а       у           5         р-q       m+n       a+b       2m-5n       x+y

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить тригонометрические уравнения : ) а) 6 cos^2+7sinx-8=0 б)2 sin^2+sinx*cosx-cosx^2=0
Ваше имя (никнейм)*
Email*
Комментарий*