keykov35
?>

Дана функция: y= 4x^3+6x^2 1.найти область определения функции. 2. найти точки пересечения графика функции с осями координат. 3.исследовать функцию на четность и нечетность. 4. найти интервалы знака постоянства функции. 5.найти интервалы монотонности функции. 6. исследовать функцию на экстремум и значение функции в заданной точке.

Алгебра

Ответы

BelyaevNadezhda223
Y=4x³+6x²

1. определена при всех х
2. х=0⇒у=0   у=0⇒х=0   одна точка пересечения в начале координат.
3. y(-x)=-4x³+6x² ни четная ни нечетная
4. y=x²(4x+6)   функция больше 0 при 4x+6 >0    x> -1.5 b  y<0 x<-1.5
5. y'=12x²+12x=12x(x+1)   

-1 0
          +                 -                +
 монотонно возрастает х∈(-∞, -1)∪(0,∞)
убывает х∈(-1,0 )

6. y'=0 12x(x+1)=0     x=0 переход от убывания к возрастанию, локальный минимум у=0
х=-1 переход от возрастания ф-ии к ее убыванию - локальный максимум. у=-4+6   у=2
magazin3000

по примеру реши.

  x^3 - 6x^2 + 11x - 6 = 0 можно, конечно, решить формулой кардано для решения кубических уравнений, но это долго и трудно. проще подобрать корни схемой горнера. возможные рациональные корни x = a/b, где а - делитель свободного члена, b - делитель старшего коэффициента. x = 1, -1, 2, -2, 3, -3, 6, -6 находишь значения в этих точках. y(1) = 1 - 6 + 11 - 6 = 0 - повезло сразу! теперь раскладываем: x^3 - x^2 - 5x^2 + 5x + 6x - 6 = 0 (x - 1)(x^2 - 5x + 6) = 0 (x - 1)(x - 2)(x - 3) = 0 ответ: x1 = 1, x2 = 2, x3 = 3

uglichwatch
Cos^2(x)+cos^2(2x)=cos^2(3x)+cos^2(4x) cos^2(x) - cos^2(3x) = cos^2(4x) - cos^2(2x) далее разность квадратов с обоих сторон (cos(x) - cos(3x))*(cos(x) + cos(3x)) = (cos(4x) - cos(2x))*(cos(4x) + cos(2x)) далее применяем формулы cosa-cosb=-2sin( (a+b)/2 )*sin( (a-b)/2 ) cosa+cosb=2cos( (a+b)/2 )*cos( (a-b)/2 ) получаем, -2sin( (x+3x)/2 )*sin( (x-3x)/2 ) * 2cos( (x+3x)/2 )*cos( (x-3x)/2 ) = = -2sin( (4x+2x)/2 )*sin( (4x-2x)/2 ) * 2cos( (4x+2x)/2 )*cos( (4x-2x)/2 ) слегка, 2-йки сокращаем, имеяя ввиду, что sin(-x)=-sin(x), а cos(-x)=cos(x) sin(2x)*sin(x)*cos(2x)*cos(x)=-sin(3x)*sin(x)*cos(3x)*cos(x) сокращая на sin(x) и cos(x) имеем ввиду, что это также является решением уравнения, т. е. уравнение распадается на три уравнения 1) sin(x)=0, тут x=пk, где k-целое число 2) cos(x)=0, тут x=п/2*k, где k-целое число 3) после сокращения на sinx и cosx sin(2x)cos(2x)=-sin(3x)cos(3x) здесь применяем формулу sin(2x)=2*sin(x)*cos(x), получаем 1/2*sin(4x)=-1/2*sin(6x) sin(4x)+sin(6x)=0 далее применяем формулу sina+sinb=2sin( (a+b)/2 )*cos( (a-b)/2 ), получаем 2sin( (4x+6x)/2 )*cos( (4x-6x)/2 ) = 0 на 2 сокращаем, получаем sin(5x)*cos(x) = 0 cos(x)=0 у нас уже имелось в пункте 2) остается sin(5x)=0 => 5x=пk => x=п/5*k, k - целое объединяем решения: 1)x=пk, где k-целое число 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое третье включает в себя первое, можно на тригонометрическом круге посмотреть, если так не понятно, поэтому остается 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое число дальше мудохаться не стоит, ответ: x=п/2*k, где k-целое число и x=п/5*k,где k - целое число p.s. п-это пи=3.1415 если что (число эйлера вроде как)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дана функция: y= 4x^3+6x^2 1.найти область определения функции. 2. найти точки пересечения графика функции с осями координат. 3.исследовать функцию на четность и нечетность. 4. найти интервалы знака постоянства функции. 5.найти интервалы монотонности функции. 6. исследовать функцию на экстремум и значение функции в заданной точке.
Ваше имя (никнейм)*
Email*
Комментарий*