ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3
а) y=(x-2) в 4 степени
1)Четная
2)Определена на всей области определения
3)Вершина в точке (2;0)
4)Ветви направлены вверх.
5)До x<2 убывает.
6)При x>4 возрастает.
б)0.5sinx+2
1) Определена на всей области определения
2) Нечетная
3) Периодическая
4) Возрастает и убывает
5) Знакопостоянна на промежутках
6) Непрерывна
7) График называеться синусойдой
в)y=0.5cosx+2
1)Определена на всей области определения
2)Четная
3)Периодическая
4)Область значений отрезок [ 1,5; 2,5];
5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ]
Г)y=-(x+2)в 4 степени.
1)Определена на всей области определения
2) Вершина в точке (-2;0)
3)Возростает (-бесконечности;-2);
4)Убывает (-2;+бесконечности);
5)Ветви направлены в низ
6) Область значений (0;-бесконечности)
7) Ость оссимптот: x=-2
8)Наибольшее значение при y=0; x=-2
9) Наименьшего значения не существует
Поделитесь своими знаниями, ответьте на вопрос:
Найдите производную функции f(x)=ctg x: 3