fedserv
?>

Метод сложения. решите систему 0.2x+0.3y=1.2|0.5x-0.6y=0.3 у меня просто не получается)

Алгебра

Ответы

info22
Первое уравнение умножаем на 2
0,4х+0,6у=2,4

Теперь складываем это уравнение со вторым
0,9х=2,7
Х=3

Подставляем Х во второе уравнение
0,5*3-0,6у=0,3
1,5-0,3=0,6у
0,6у=1,2
У=2
myudanova631

Уравнение sin y = 0 решается просто: y = pi*n1; n1 ∈ Z

Уравнение sin(sin y) = 0 решается сначала также:

sin y = pi*n1

А потом

y1 = arcsin(pi*n1) + 2pi*n2; n2 ∈ Z

y2 = pi - arcsin(pi*n1) + 2pi*n2; n2 ∈ Z

n1 нужно подобрать так, чтобы было -1 < pi*n1 < 1

Это значит, что n1 = 0; y1 = 2pi*n2; y2 = pi + 2pi*n2

Теперь решаем наше уравнение sin(sin(sin x)) = 0

Получаем:

sin y1 = arcsin(pi*n1) + 2pi*n2; n2 ∈ Z

pi*n1 = 0; sin y1 = 2pi*n2

x1 = arcsin [arcsin(pi*n1) + 2pi*n2] + 2pi*n3; n3 ∈ Z

x2 = pi - arcsin [arcsin(pi*n1) + 2pi*n2] + 2pi*n3; n3 ∈ Z

n1 = 0; n2 = 0; x1 = 2pi*n3; x2 = pi + 2pi*n3

sin y2 = pi - arcsin(pi*n1) + 2pi*n2; n2 ∈ Z

x3 = arcsin [pi - arcsin(pi*n1) + 2pi*n2] + 2pi*n3; n3 ∈ Z

x4 = pi - arcsin [pi - arcsin(pi*n1) + 2pi*n2] + 2pi*n3; n3 ∈ Z

Здесь решений нет, потому что

pi - arcsin(pi*n1) + 2pi*n2 ∉ [-1; 1] ни при каких n1; n2.

Решение: x1 = 2pi*n; x2 = pi + 2pi*n; n ∈ Z

Если решения объединить, получится

ответ: x = pi*n; n € Z

iraimironova

1) Логарифм определен на положительной полуоси, на ней х не равен нулю, так что со знаменателем все ок. Потому функция определена на положительной полуоси (0,+беск)

2) Фцнкция не определена на отрицателных значениях, потому она не может быть четной или нечетной.

3)С Оу не пересекается, т.к не определена в точке х=0. С Ох точка пересечения - решение уравнения

x{e}^{x} = 1

это уравнение не имеет решений в элементарных функциях, это далеко за рамками школьной программы. Если устроит - решение этого уравнения - так называемая константа Омега.

4) Функция непрерывна на (0,+беск) как сумма константы и частного двух непрерывных функций

5)---

6)Асимптоты 2, видно из самого графика. Одна - у=1, так как функция стркмится к 1 при х стремящемуся к бесконечности. Вторая - х=0, так как функция стрмится к минус бесконечности при х стремящимуся к нулю. Возможно, в вашем курсе вторая асимптота не рассматривается, так как асимптота х=0 не есть функция.

7,8) Так как

f'(x) = \frac{1 - lnx}{ {x}^{2} } = 0 \\ \\ lnx = 1 \\ x = e

То х=е - точка экстремума. Уже говорилось, что функция стремится к 1 при х стремящемуся к бесконечности и к -беск при х стрмящемуся к нулю. Так как в точке е функция больше 1, то это точка локального (и глобального) максимума.

Функция растет на (0,е) и падает на (е, +беск)

9)

f''(x) = \frac{ - \frac{1}{x} \times {x}^{2} - 2x + 2xlnx}{ {x}^{4} } = \frac{ - 3 + 2lnx}{ {x}^{3} } = 0 \\ \\ - 3 + 2lnx = 0 \\ x = {e}^{ \frac{3}{2} }

Для иксов меньше найенного значения вторая производная отрицательна, следовательно функция выпукла. Для иксов больше - чсе наоборот, следтвательно, функция вогнута

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Метод сложения. решите систему 0.2x+0.3y=1.2|0.5x-0.6y=0.3 у меня просто не получается)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

filternovo
Nivanova995
Sidorenko
Елена Надыч524
bryzgalovag
eremenkou
Никита
Andreevna_Grebenshchikova155
om805633748
ermisyareg436
Евгеньевич Балиловна1398
LidiyaBorzikh
kotikdmytriy11
tsypanttn21
izumrud153