mdsazonovatv1173
?>

Решить уравнение, с объяснениями. 2(x^2+1)+5=0

Алгебра

Ответы

marinarodina90
2( x^2 + 1) + 5 = 0
Раскрываем скобки:
2x^2 + 2 + 5 = 0
Приводим подобные слагаемые:
2x^2 + 7 = 0
2x^2 = - 7
x^2 = - 3,5 - корней нет,так как нельзя извлечь корень из отрицательного числа.
ответ: корней нет.
aleksey7800
Сначала раскроем скобки. То есть 2 умножим на х^2 и на 1. Получается:
2*х^2+2+5=0
Переносим все числа в другую сторону с противоположным
знаком( кроме х)
2*х^2=-2-5
2*х^2=-7
х^2=-7/2
х= \sqrt{-7} / \sqrt{2}
perova-s200

1) 1 случай a=0, то уравнение примет вид: (n+1)x + 1=0 

x=-1/(n+1), отсюда видно, что n-любое действительное число, кроме n= -1( ибо в знаменателе будет ноль)

2) 2 случай a неравно 0

тогда имеем: ax^2+(n+1)x +1=0, чтобы уравнение имело имело решения дистриминант должен быть больше или равнятся нулю.

D=(n+1)^2 -4a>или равно нулю

(n+1)^2> или = 4а

отсюда видно, что  число в квадрате всегда будет больше или равно нулю, если а будет больше или равно нулю

Значит n-любое, если а>или=0

ответ: 1) n- любое , кроме n=-1. 2) n- любое, если а> или=0( вот тут совнемаюсь немного)

vvk2008

1)

\frac{a}{a-sin^22x}=3

a=3(a-sin^22x)

sin^22x=2a

sin2x=\sqrt{2a}

Так как значения синуса не могут быть большими единицы, получаем:

-1<\sqrt{2a}<1

Так как выражение под радикалом и собственно весь радикал не могут быть отрицательными получаем:

0<\sqrt{2a}<1

Откуда получаем:

2a0

a0

2a<1

a<\frac{1}{2}

Объединяя полученные результаты получаем: a∈(0;\frac{1}{2})

ответ: a∈(0;\frac{1}{2})

2)

sinx-cos2x=a^2+2

sinx-(1-2sin^2x)=a^2+2

2sin^2x-sinx-1-a^2-2=0

sinx=t

Получаем квадратное уравнение относительно t:

2t^2-t-1-a^2-2=0

D=1+4*2*(1+a^2-2)=1+8(a^2-1)=8a^2-7

t=\frac{1+\sqrt{8a^2-7}}{2}

t=\frac{1-\sqrt{8a^2-7}}{2}

Исходя из того что данное уравнение должно иметь лишь одно решение получаем, что дискриминант должен быть равен нулю:

8a^2-7=0

a^2=\frac{7}{8}

a=\sqrt{\frac{7}{8}}

a=-\sqrt{\frac{7}{8}}

Но так как нам нужно только одно решение в заданном промежутке получаем:

sinx=\frac{1+\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1+\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1+\sqrt{8a^2-7}}{2})<6\pi

1+\sqrt{8a^2-7}0

неравенство не имеет решений

sinx=\frac{1-\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1-\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1-\sqrt{8a^2-7}}{2})<6\pi

1-\sqrt{8a^2-7}0

8a^2-7<1

a^2<1

(a-1)(a+1)<0

Получаем, что при a∈(-1;1) данное уравнение имеет лишь один корень

ответ: a∈(-1;1)

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить уравнение, с объяснениями. 2(x^2+1)+5=0
Ваше имя (никнейм)*
Email*
Комментарий*