В результате выделения полных квадратов получаем:
-4(x - 2)² + 25(y + 2)² = 100
Разделим все выражение на 100 :
(-1/25)(x - 2)² + (1/4)(y + 2)² = 1.
Параметры кривой.
Данное уравнение определяет гиперболу с центром в точке:
C(2; -2) и полуосями:
a = 5 (мнимая полуось); b = 2 (действительная полуось) .
Вершины:(2; 0) и (2; -4).
Найдем координаты ее фокусов: F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Определим параметр c: c² = a² + b² = 25 + 4 = 29
Тогда эксцентриситет будет равен: e = c/a = √29/5.
Асимптотами гиперболы будут прямые: y + 2 = +-(2/5))x - 2)
Директрисами гиперболы будут прямые: (x - 2) = +-(25/√29).
Поделитесь своими знаниями, ответьте на вопрос:
Сумма 16 первых членов арифметической прогрессии (аn) , в которой а1=8, d=4, равна ?
s16=16/2(a1+a16)
a16=a1+15.d, a16=8+15.4=8+60=68,a16=68
s16=16/2.(8+68)=8.76=608
s16=608