Голубева1440
?>

Решите уравнение : а)x^2-169=0 b)(3-x)(x+3)-x(1-x)=0

Алгебра

Ответы

kotovayaanastasia2069
Решение во вложении.
Сергеевна-Иван1045

1) −0,8z5(1,2m5−2,5z) = -0.96z5m5+2z6

2) 11p3d(d3p−d3)=11p4d4−11p3d4

3) x9y2z(x2+10y2+7z2)=)x11y2z+10x9y4z+7x9y2z3

4) (4a3−3b)⋅2b−3b⋅(14a3−4b)=8a³b-6b²-42a³b+12b²= -34a³b+6b²

5) −9t2(2t5−3k)+5(4t7−2k)=-18t7+27t²k+20t7-10k=2t7+27t²k-10k

6) 13ab(14a²−b2)+14ab(b²−13a²)=182a³b-13ab³+14ab³=182a³b=ab³

10*(-2)³=10*(-8)=-80

7) 0,8(4a+3b)−6(0,3a+0,8b)=3.2a+2.4b-1.8a-4.8b=1.4а-2.4b

1.4*2-2.4*(-4)=2.8+9.6=12.4

8) 3x−ay+bz=3*(5с3+2)-3с(6с2-с+14)+15с3*(5с-1)=15с3+6-18с3+3с2-42с+75с4-15с3=75с4+(-18с3)+3с2+(-42с)+6

Объяснение:

Марина

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m - любые действительные числа. Тогда

1) an am = an+m

2)

a

n

a

m

=

a

n

m

3) (an)m = anm

4) (ab)n = an bn

5)

(

a

b

)

n

=

a

n

b

n

6) an > 0

7) an > 1, если a > 1, n > 0

8) an < am, если a > 1, n < m

9) an > am, если 0< a < 1, n < m

В практике часто используются функции вида y = ax, где a - заданное положительное число, x - переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0,

a

1

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.

Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.

Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0,

a

1

, не имеет корней, если

b

0

, и имеет корень при любом b > 0.

3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 < a < 1.

Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = ax при a > 0 и при 0 < a < 1.

Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.

Если х < 0 и |х| увеличивается, то график быстро приближается к оси Oх (но не пересекает её). Таким образом, ось Ох является горизонтальной асимптотой графика функции у = ax при a > 0.

Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = ax при 0 < a < 1 также проходит через точку (0; 1) и расположен выше оси Ох.

Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.

Если х < 0 и |х| увеличивается, то график быстро поднимается вверх.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение : а)x^2-169=0 b)(3-x)(x+3)-x(1-x)=0
Ваше имя (никнейм)*
Email*
Комментарий*