а) y=(x-2) в 4 степени
1)Четная
2)Определена на всей области определения
3)Вершина в точке (2;0)
4)Ветви направлены вверх.
5)До x<2 убывает.
6)При x>4 возрастает.
б)0.5sinx+2
1) Определена на всей области определения
2) Нечетная
3) Периодическая
4) Возрастает и убывает
5) Знакопостоянна на промежутках
6) Непрерывна
7) График называеться синусойдой
в)y=0.5cosx+2
1)Определена на всей области определения
2)Четная
3)Периодическая
4)Область значений отрезок [ 1,5; 2,5];
5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ]
Г)y=-(x+2)в 4 степени.
1)Определена на всей области определения
2) Вершина в точке (-2;0)
3)Возростает (-бесконечности;-2);
4)Убывает (-2;+бесконечности);
5)Ветви направлены в низ
6) Область значений (0;-бесконечности)
7) Ость оссимптот: x=-2
8)Наибольшее значение при y=0; x=-2
9) Наименьшего значения не существует
ответ: сори ответила только на первый пример
3
2(1−3x)
+
2
3x−3
=
6
x−3
−1
Умножьте обе стороны уравнения на 6, наименьшее общее кратное чисел 3,2,6.
2×2(1−3x)+3(3x−3)=x−3−6
Перемножьте 2 и 2, чтобы получить 4.
4(1−3x)+3(3x−3)=x−3−6
Чтобы умножить 4 на 1−3x, используйте свойство дистрибутивности.
4−12x+3(3x−3)=x−3−6
Чтобы умножить 3 на 3x−3, используйте свойство дистрибутивности.
4−12x+9x−9=x−3−6
Объедините −12x и 9x, чтобы получить −3x.
4−3x−9=x−3−6
Вычтите 9 из 4, чтобы получить −5.
−5−3x=x−3−6
Вычтите 6 из −3, чтобы получить −9.
−5−3x=x−9
Вычтите x из обеих частей уравнения.
−5−3x−x=−9
Объедините −3x и −x, чтобы получить −4x.
−5−4x=−9
Прибавьте 5 к обеим частям.
−4x=−9+5
Чтобы вычислить −4, сложите −9 и 5.
−4x=−4
Разделите обе части на −4.
x=
−4
−4
Разделите −4 на −4, чтобы получить 1.
x=1
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
При якому значенні а пряма х=а ділить площу фігури, обмеженої графіком функції f(x)=\frac{4}{x} і прямими у=0, х=4, х=9, навпіл?
Теперь выберем какую-то точку х=а между 4 и 9 такую,
чтобы площадь фигуры, ограниченной гиперболой y=4/x,
прямыми х=4 и х=а, равнялась половине площади заданной фигуры.
Вычислим её площадь: