2 Сos² 2x -1 +Cos 2x = 0 2 Cos² 2x - Cos x -1 = 0 Решаем как квадратное a) Cos 2x = 1 б) Cos 2x = -1/2 2x = 2πk, где к ∈Z 2x = +- arc Cos (-1/2) +2π n , где n∈Z х = π к, где к∈Z 2x = +-2π/3 + 2πn, где n∈Z x = +- π/3 + πn,где n∈ Z Получили 2 группы корней. Будем искать корни, которые попадают в указанный промежуток Разберёмся с указанным отрезком на числовой прямой -π -π/2 0 π/3 а) х = πк,где к ∈Z k = -1 x = -π ( попадает в указанный отрезок) к = 0 х = 0 ( попадает в указанный отрезок) к = 1 к = 2 х = 2π( не попадает в указанный отрезок) б) х = +- π/3 +πn,где n ∈Z n = 0 x = +-π/3 (попадает в указанный отрезок) n = 1 х = π/3 + π( не попадает) х= - π/3 +π ( не попадает) n = -1 x = π/3 - π = -2π/3( попадает) х = -π/3 -π(не попадает)
ooozita5
21.09.2020
смотри 1. Берешь производную. получается y` = -2X - 6. 2. Находишь экстремум - т. е. точки, где прозводная равно 0. 0 = -2X - 6 X= - 3. Так как значение одно, значит экстремум один всего у функции. Это либо маскимум, либо минимум. 3. Производная в точке слева от экстремума, например, y`(-10) = 14 > 0 Производная справа, например в точке X=0 y`(0) = - 6 < 0. Т. е. производная меняет знак с плюса на минус. Значит X = -3 - это максимум. Либо зная, что экстремум один. Берешь любое другое значение для функции, например X=0. получаешь Y = -9. Значит экстремум больше этого значения. А так как он больше и он один, то полюбому это максимум при любых значениях X.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
1) из уравнения 4x-5y=9 выразите a) y через x b) x через y.