1.
а)2х/3у;
б)(х+1)/х.
2.
а)(х-2)/х;
б)(ах²)/(8у²).
3. 8.
Объяснение:
1. Сократить дроби:
а)[16x(x-y)]/[24y(x-y)]=
сокращение (x-y) и (x-y) на (x-y), 16 и 24 на 8:
=2х/3у;
б)(х²+х)/х²=[x(x+1)]/x²=
сокращение х и x² на х:
=(х+1)/х.
2. Выполнить действия:
а)(14х-9)/17х+(3х-25)/17х=
=(14х-9+3х-25)/17х=
=(17х-34)/17х=
=[17(x-2)]/17x=
сокращение 17 и 17 на 17:
=(х-2)/х;
б)(ах+ау)/ху³ * х³у/(8х+8у)=
=[a(x+y)]/ху³ * х³у/[8(x+y)]=
Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй дроби, а знаменатель первой дроби умножить на знаменатель второй дроби:
=[a(x+y)*х³у] / [ху³ *8(x+y)]=
сокращение (x+y) и (x+y) на (x+y), х и х³ на х, у и у³ на у:
=(ах²)/(8у²).
3. Найти значение выражения:
(у²-4у+4)/(у²-4) : (10у-20)/(у²+2у)= при у=80
В числителе первой дроби развёрнут квадрат разности, свернуть, в знаменателе разность квадратов, развернуть.
В числителе второй дроби вынести 10 за скобки, в знаменателе вынести у за скобки:
=(у-2)²/(у-2)(у+2) : [10(y-2)]/[y(y+2)]=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой умножить на числитель второй.
=[(у-2)(у-2)*y(y+2)] : [(у-2)(у+2)*10(y-2)]=
сокращение (у-2) и (у-2) на (у-2) 2 раза, (у+2) и (у+2) на (у+2)
=у/10=80/10=8.
Дано: bn – геометрическая прогрессия;
b1 + b2 = 30, b2 + b3 = 20;
Найти: b1; b2; b3 - ?
Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),
где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии этой формулы выразим второй и третий члены заданной прогрессии:
b2 = b1 * q^(2 – 1) = b1 * q;
b3 = b1 * q^(3 – 1) = b1 * q^2.
Т.о. имеем:
b1 + b2 = 30; и b2 + b3 = 20;
b1 + b1 * q = 30; b1 * q + b1 * q^2 = 20;
b1 (1 + q) = 30; b1 (q + q^2) = 20;
b1 = 30 / (1 + q). b1 = 20 / (q + q^2).
Т.е. 30 / (1 + q) = 20 / (q + q^2);
30 * (q + q^2) = 20 * (1 + q);
30q + 30q^2 = 20 + 20q;
30q^2 + 10q – 20 = 0;
D = (10)^2 – 4 * 30 * (-20) = 2500; sqrt(D) = sqrt (2500) = 50;
q1 = (-10 + 50) / 60 = 2/3;
q2 = (-10 - 50) / 60 = -1.
Подставим оба полученных значений q выражение для нахождения b1:
b1 = 30 / (1 + 2/3) = 30 / (5/3) = 90/5 = 18;
b1 = 30 / (1 + (-1)) = 30 / 0 – смысла не имеет, следовательно, q = 2/3.
b2 = b1 * q = 18 * 2/3 = 12;
b3 = b1 * q^2 = 18 * 2/3^2 = 8.
ответ: b1 = 18; b2 = 12; b3 =8.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
15 . 7(х+14)-5(6х+1)=70 и 2(7х-3)=6(5+1)
7х+98-30х-5=70
7х-30х=70-98+5
-23х=-23
х=1
2) 2(7х-3)=6(5+1)
14х-6=зо+6
14х=30+6+6
14х=42
х=3