2x^3-9x^2-24x-31=0 6x^2-18x-24=0 \\ 6(x^2-3x-4)=0 \\ D=9+16=25 \\ x_{1,2} = \frac{3б5}{2} ; x_1 = 4; x_2 = -1 \\ f(-1) = -18 ; f(4) = -143; Слева от экстремума (-1) функция убывает, там нулей нет. Между экстремумов тоже нулей нет, т.к. она монотонно убывает между ними. Справа от f(4) функция возрастает, значит всего один корень.
suturinavaleriya51
02.09.2020
y(x)=ах²+bx+c (а≠0)
при а>0 ветви параболы идут вверх при а<0 ветви параболы идут вниз прежде всего найдем нули функции, то есть те х, при которых у=0
обращается в ноль для этого решаем уравнение ах²+bx+c=0 для начала находим дискриминант D=b²-4ac если D>0, у нас будут два пересечения с осью ОХ в точках х¹ и х² которые являются корнями квадратичной функции.
х¹'²=(-b±✓D)/2a
если D=0, то такая точка будет одна, причём ось ОХ будет касательной к параболе в этой точке.
если D<0, и а>0 то парабола будет над осью ОХ и все у>0 если D>0 и а<0, то парабола будет под осью ОХ и все у<0
теперь найдем те точки, при которых парабола пересекает ось ОУ
для этого подставляем х=0 в y(x)=ах²+bx+c, нетрудно увидеть, что при х=0, у=с
далее найдем производную у'
y'(x)=(ах²+bx+c)'=2аx+b y'(x*)=0 => x*= -b/(2a)
это координата вершины параболы затем посчитаем y*=y(x*), подставив х* в наше уравнение параболы у(х*)=а(х*)²+bx*+с
Так что основными точками , которые Вам надо найти будут точки пересечения параболы с осями ОХ, ОУ и вершина параболы. остальные точки - на Ваше усмотрение...
Kuzina Sergeevna
02.09.2020
Пусть ширина х см, длина у см. Площадь S=xy кв см.
Если ширину уменьшить на 2 см, а длину увеличить на 3 см, то ширина станет равно (х-2) см, длина (у+3) см. Площадь (х-2)(у+3) уменьшится на 8 кв см. Уравнение. ху=(х+2)(у+3)+8
Если ширину увеличить на 4 и длину увеличить на 4, то ширина станет равной (х+4), длина - (у+4). Площадь (х+4)(у+4) увеличится на 80 кв. см. Уравнение. (х+4)(у+4)=ху+80
6x^2-18x-24=0 \\
6(x^2-3x-4)=0 \\
D=9+16=25 \\
x_{1,2} = \frac{3б5}{2} ; x_1 = 4; x_2 = -1 \\
f(-1) = -18 ; f(4) = -143;
Слева от экстремума (-1) функция убывает, там нулей нет.
Между экстремумов тоже нулей нет, т.к. она монотонно убывает между ними.
Справа от f(4) функция возрастает, значит всего один корень.