Я не стану спецом лезть в инет и чекать где она применяется, я лишь приведу свои примеры, где тригонометрия мне пригодилась, да они будут тупыми, но все же :D
Во-первых, без тригонометрии очень сложно в физике, при решении сложных физических задач на механику, электродинамику очень часто приходится знать тригонометрию, особенно в теме колебательного движения, так как гармонические колебания происходят по закону синуса или косинуса, то есть графиком будет синусоида.
Во-вторых, когда тебе может быть скучно, допустим ты находишься в своей машине на горке под определенным углом к горизонту и тебе нужно найти проекцию силы тяжести, которая тянет твою машину вниз, то без тригонометрии тоже сложно это сделать. Ну это все шутки конечно...
Тригонометрия нужна в разработке 3-D игр, даже не зачем объяснять почему - это итак очевидно, нужно, допустим, определить траекторию полета какого-то тела или проверить столкнутся ли тела, либо тебе необходимо заставить объект двигаться в любом направлении - это все без так называемых "синусов" и "косинусов" не сделать.
Вообщем говоря стоит признать уже всем, что без тригонометрии нам никуда и как ни крути все равно придется ее знать.
Поделитесь своими знаниями, ответьте на вопрос:
Ск-ко целых значений х удовлетворяет неравенству: log по основанию 11(log по основанию 2(log( х) по основанию 7))< =0
log(11)[log(2)(log(7)x)]≤0
log(2)(log(7)x)≤11^0
log(2)(log(7)x)≤1
log(7)x≤2^1
log(7)x≤2
x≤7²
x≤49
x∈(0;49]
ответ 49 целых решений