.................Решение на фото............... По заданному условию можно найти только наименьшее значение, оно будет в точке минимума. По графику видно - функция возрастает до бесконечности, найти наибольшее значение не возможно. Но в любом случае оно будет на одном из концов заданного отрезка. Если от [-1;1], то наибольшее значение при y(-1)=sqrt(5).
trubchaninova71511
27.10.2021
Решение 1) 2cosx-1 < 0 cosx < 1/2 arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z 2) sin2x - √2/2 < 0 sin2x < √2/2 - π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z - π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z - 5π/8 + πk < x < π/8 + πk, k ∈ Z 3) tgx<1 - π/2 + πn < x < arctg(1) + πn, n ∈ Z - π/2 + πn < x < π/4 + πn, n ∈ Z
kozhevniks
27.10.2021
Решение 1) 2cosx-1 < 0 cosx < 1/2 arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z 2) sin2x - √2/2 < 0 sin2x < √2/2 - π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z - π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z - 5π/8 + πk < x < π/8 + πk, k ∈ Z 3) tgx<1 - π/2 + πn < x < arctg(1) + πn, n ∈ Z - π/2 + πn < x < π/4 + πn, n ∈ Z
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите наибольшее и наименьшее значение функции: y=корень из 2x^2-2x+1