Раз прямая является касательной, значит есть точка пересечения, поэтому приравниваем эти два уравнения 28x^2+bx+15=-5x+8 28x^2+(b+5)x+7=0 раз точка касания единственная, значит дескриминант должен равен нулю D=b^2+10b-759 =0 решаем получаем 2 корня b1=-33, b2=23 подставляем в уравнение графика y1=28x^2-33x+15 и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем -5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая -5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Значит ответ в=-33. Конец
nikv568734
31.10.2022
А) соответственные углы при пересечении двух парал. прямых третьей равны, значит 2х=240°; х=240°/2; х=120°. у=180°-120°=60°. ответ: 120° и 60°.
Б) внутренние односторонние углы при параллельных в сумме дают 180°. Если меньший из них принять за х, то второй х+20°, а их сумма х+х+20°=180°; 2х+20°=180°; 2х=180°-20°; 2х=160° х=160°/2 х=80° 80°+20°=100° ответ: 80° и 100°.
В) Накрест лежащие углы при параллельных равны, поэтому можно их (каждый из них принять за х. Тогда 2х=250° х=250°/2 х=125° 180°-125°=55° ответ: 125° и 55°.
6x^2 = 18
x^2 = 3
x₁ = - √3
x₂ = √3
x^2 + 3x = 0
x (x + 3) = 0
x = 0 ;
x = - 3