Вообще говоря, квадратное уравнение ВСЕГДА имеет 2 корня. Они могут быть:
1) разными действительными числами (если дискриминант уравнения положителен);
2) одинаковыми действительными числами (если дискриминант равен нулю);
3) комплексными сопряжёнными числами (если дискриминант отрицателен).
Но если, как это делается в школе, рассматривать только действительные корни, и при этом два равных корня считать одним, то при таких условиях уравнение будет иметь 2 корня только в случае, если дискриминант положителен.
Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
Поделитесь своими знаниями, ответьте на вопрос:
Вслучайном эксперименте бросают три игральные кости. найдите вероятность того, что в сумме выпадет 10 очков. результат округлите до сотых.