Відповідь:
Сразу разбираемся в обозначениях и терминах:
– значок интеграла.
– подынтегральная функция (пишется с буквой «ы»).
– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.
– подынтегральное выражение или «начинка» интеграла.
– первообразная функция.
– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .
Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Еще раз посмотрим на запись:
Посмотрим в таблицу интегралов.
Что происходит? Левые части у нас превращаются в другие функции: .
У наше определение.
Решить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Возьмем, например, табличный интеграл . Что произошло? превратился в функцию .
Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, первообразная функция с теоретической точки зрения. Достаточно осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.
Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:
Пояснення:
1. x² - 6x + 9 = 0
D = 0
x = -b/2a = 6/2 = 3
Відповідь: в) 1
2. x² - 7x = -6
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ + x₂ = 6 + 1 = 7
Відповідь: а) 7
3. x² - 7x + 6 = 0
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ · x₂ = 6 · 1 = 6
Відповідь: г) 6
4. x² - 15x + 56 = 0
x² - 7x - 8x + 56 = 0
x(x - 7) - 8(x - 7) = 0
(x - 7)(x - 8) = 0
x - 7 = 0
x₁ = 7
x - 8 = 0
x₂ = 8
Відповідь: в) 7i 8
Поделитесь своими знаниями, ответьте на вопрос:
Решите неравенство x²- 4x< 0. в ответе укажите номер правильного варианта. 1.[0; 4] 2.[1∞; 0) u (4; +∞) 30; 4) ∞; 0] u [4; +∞)
Пусть х = 5, тогда расставим знаки методом интервалов (см. рисунок).
Значит, у<0 при х∈(0;4)
ответ: 3