ответобьяснение
Объяснение:
при имеющемся знаменателе необходимо производить деление такого типа функции как
y
=
x
+
2
⋅
x
x
4
−
1
;
при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа
y
=
√
x
+
1
или
y
=
x
√
2
3
⋅
x
+
3
;
при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как
y
=
5
⋅
(
x
+
1
)
−
3
,
y
=
−
1
+
x
1
1
3
,
y
=
(
x
3
−
x
+
1
)
√
2
, которые определены не для всех чисел;
при наличии переменной под знаком логарифма или в основании вида
y
=
ln
x
2
+
x
4
или
y
=
1
+
log
x
−
1
(
x
+
1
)
причем основание является числом положительным, как и число под знаком логарифма;
при наличии переменной, находящейся под знаком тангенса и котангенса вида
y
=
x
3
+
t
g
(
2
⋅
x
+
5
)
или
y
=
c
t
g
(
3
⋅
x
3
−
1
)
, так как они существуют не для любого числа;
при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида
y
=
a
r
c
sin
(
x
+
2
)
+
2
⋅
x
2
,
y
=
a
r
c
cos
(
|
x
−
1
|
+
x
)
, область определения которых определяется ни интервале от
−
1
до
1
.при имеющемся знаменателе необходимо производить деление такого типа функции как
y
=
x
+
2
⋅
x
x
4
−
1
;
при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа
y
=
√
x
+
1
или
y
=
x
√
2
3
⋅
x
+
3
;
при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как
y
=
5
⋅
(
x
+
1
)
−
3
,
y
=
−
1
+
x
1
1
3
,
y
=
(
x
3
−
x
+
1
)
√
2
, которые определены не для всех чисел;
при наличии переменной под знаком логарифма или в основании вида
y
=
ln
x
2
+
x
4
или
y
=
1
+
log
x
−
1
(
x
+
1
)
причем основание является числом положительным, как и число под знаком логарифма;
при наличии переменной, находящейся под знаком тангенса и котангенса вида
y
=
x
3
+
t
g
(
2
⋅
x
+
5
)
или
y
=
c
t
g
(
3
⋅
x
3
−
1
)
, так как они существуют не для любого числа;
при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида
y
=
a
r
c
sin
(
x
+
2
)
+
2
⋅
x
2
,
y
=
a
r
c
cos
(
|
x
−
1
|
+
x
)
, область определения которых определяется ни интервале от
−
1
до
1
.
Объяснение:
a) Прямые параллельны, если угловые коэффициенты k, отвечающие за угол наклона по оси Х, равны, а члены b, отвечающие за сдвиг по оси Y, не равны между собой.
То есть формула прямой, параллельной y=-1,5x+4 имеет вид y=-1,5x+b, где b - любое число (не равное 4), например, 3:
y=-1,5x+3
б) Например, y=x+1. Угловые коэффициенты не равны, а значит прямые не параллельны, а значит у них есть точка пересечения. Ее легко найти, приравняв между собой функции: x+1=-1,5x+4
в) Аналогично с пунктом а), только член b должен быть равен нулю, так как по условию график функции проходит через начало координат, то есть сдвига по оси Y нет.
y=-1,5x
Поделитесь своими знаниями, ответьте на вопрос:
Расстояние между двумя пристанями по реке равно 27км . катер проплывет его по течению реки 1, 5ч , а против течения за 2ч 15мин. найдите собственную скорость катера и скорость течения реки
S= t₁ V по теч. = t₁ (Vc +V т) ⇒ V по теч. = S/t₁
t₁ = 1.5 ч. , S= 27 км
V по теч.= 27/1,5 = 18 км/ч - скорость по течению
Против течения:
S= t₂ V против теч. = t₂ (Vc-V т) ⇒ V против теч. = S/t₂
t₂ = 2 ч. 15 мин. = 2 15/60 ч. = 2,25 ч.
V против теч.= 27 / 2,25 = 12 км/ ч - скорость против течения
Система уравнений
{V с+ V т = 18
{Vc - V т = 12
Vc + V т + Vc - V т = 18+12
2Vc = 30
Vc = 30/2
Vc = 15 км/ч - собственная скорость катера
V т = 18-15 = 15-12 = 3 км/ ч - скорость течения
ответ: Vc= 15 км/ч , V т = 3 км/ч