Ищем дискриминант 25-8с далее ищем корни х1= (5- корень(25-8с))/4 х2=(5+корень(25-8с))/4 второй корень больше первого, поэтому х2-х1=1,5 (5+корень(25-8с))/4-(5-корень(25-8с))/4=1,5 так как знаменатель одинаковый, считаем числитель (2корня(25-8с))/4=1,5 2корня(25-8с)=6 корень(25-8с)=3 25-8с=9 8с=16 с=2 ответ 2. Удачи)
dumpler
01.05.2020
А) 3х -2у =8 ⇒ 2у = 3х -8 ⇒ у = 1,5 х -4 В этом уравнении угловой коэффициент к = 1,5. Любое уравнение , в котором к≠ 1,5 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) б) -5х +4у =3 ⇒ 4у = 3х -8 ⇒ у = 5 х +3 В этом уравнении угловой коэффициент к = 5. Любое уравнение , в котором к≠ 5 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) в) -3х -7 у =2 ⇒ 7у = -3х - 2 ⇒ у = -3/7 х - 2/7 В этом уравнении угловой коэффициент к = -3/7 Любое уравнение , в котором к≠ -3/7 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) г)5х + 6у = 9 ⇒ 6у = -5х - 9 ⇒ у = -5/6 х - 9/6 В этом уравнении угловой коэффициент к =-5/6. Любое уравнение , в котором к≠ -5/6 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.)
yahottabych201379
01.05.2020
Задача 1) Пусть х (км/ч) - скорость первого автомобилиста, тогда второй автомобилист ехал первую половину пути (х-12) км/ч.S (км) - весь путь. Время, затраченное первым автомобилистом на весь путь:S/х (ч). Время, затраченное вторым автомобилистом на первую половину пути:S/ (х-12) (ч), а время, затраченное вторым автомобилистом на вторую половину пути: S/70 (ч). Составим уравнение.S/х= 0,5S/ х-12 + 0,5S/70S*70(х-12)=0,5S*70+0,5S *х(х-12)S*(70х-840) = S*35х +S*0,5*(х^2-12х)Разделим всё на S70х-840=35х+0,5х^2-6х70х-35х+6х-0,5х^2-840=0Решаем квадратное уравнение-0,5х^2+41х-840=0х1,2=(-41 +- (корень квадратный из:41^2 - 4 *(-0,5)*(-840)) / 2*(-0,5)х1,2=(-41+- (корень квадратный из: 1681-1680)) / (-1)х1,2=(-41 +-1) / (-1)х1= (-41+1)/ (-1)=-40: (-1)=40х2= (-41-1)/ (-1) = -42: (-1) =42 Скорость 40 км/ч не подходит, т.к. по условию задачи скорость первого автомобилиста больше 41 км/ч, следовательно скорость первого автомобилиста: 42 км/ч ответ: скорость первого автомобилиста 42 км/ч Задача 2) Пусть х км в час скорость лодки в неподвижной воде. (х+3) км в час скорость лодки по течению, (х-3) км в час скорость лодки против течения Плот км со скоростью реки, т.е 3 км в час 51:3= 17 часов плыл плот, Лодка отправилась на час позже, т.е плыла 17-1=16 часов За это время лодка проплыла путь в 140 км по течению и 140 км против течения Составим уравнение: 140/(х+3) + 140/ (х-3)= 16 Приведем дроби к общему знаменателю 140( х-3+х+3)/(х²-9) = 16, раздели обе части уравнения на 4 и умножим на (х²-9)≠0 получим: 35·2х=4(х²-9). 4х²-70х-36=0. 2х²-35х-18=0 D=35²+8·18=1225+144=1369=37² x=(35-37)/4 <0 не удовлетворяет условию задачи или х=(35+37)/4=18 ответ 18 км в час скорость лодки в неподвижной воде
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Если разность корней уравнения 2x^-5x+c=0 равна 1, 5 то с равно
х1= (5- корень(25-8с))/4
х2=(5+корень(25-8с))/4
второй корень больше первого, поэтому
х2-х1=1,5
(5+корень(25-8с))/4-(5-корень(25-8с))/4=1,5
так как знаменатель одинаковый, считаем числитель
(2корня(25-8с))/4=1,5
2корня(25-8с)=6
корень(25-8с)=3
25-8с=9
8с=16
с=2
ответ 2.
Удачи)