Для любой функции f(x) есть множество первообразных: F(x) +C. надо найти С. F(a) + C = b C = b - F(x) Первообразная : F(x) + b - F(x) = b
TatiyanaBe20135263
05.04.2023
1.(3a-2b)/(2a+3b)при а=-1, b=1 (3·(-1)-2·1)/(2·(-1)+3·1)=(-5)/1=-5. О т в е т. -5. 2.Дробь не имеет смысла, если ее знаменатель равен 0 ( на 0 делить нельзя!) , т.е при 2х-4=0 2х=4 х=2 О т в е т. 3)х=2. 3.Одним из корней уравнения х(х+1)=6 является число х=2, потому что 2·(2+1)=6 - верное равенство. О т в е т. 2)2. 4. (5+2х)-(3х-9)=2; 5+2x-3x+9=2; 2x-3x=2-9-5; -x=-12; x=12. О т в е т. х=12 - корень уравнения (5+2х)-(3х-9)=2.
1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите первообразную f(x) функции y = f (x), график которой проходит через точку m (a; b):
F(a) + C = b
C = b - F(x)
Первообразная : F(x) + b - F(x) = b