В1) F(x)=3x+x³/3+C Подставляем координаты точки М и находим С 6=3*1+1³/3+С ответ:
В2) F(x)=x³/3+3x²/2+C Поскольку F'(x)=х²+3х, то для нахождения точек экстремума приравняем ее 0 х²+3х=0 x(x+3)=0 Произведение равно 0, когда хотя бы один из множителей равен 0. Поэтому x₁=0 x₂+3=0 x₂=-3 Определяем знаки интервалов + - + ---------------₀---------------₀----------------> -3 0 В точке -3 производная меняет знак с плюса на минус, значит, это точка максимума В точке 0 производная пеняет знак с минуса на плюс, значит, это точка минимума На промежутке (-∞;-3] и [0;∞) функция возрастает На промежутке [-3;0] функция убывает
С1) Найдем производную F'(x)=(х⁵+3х²-cosх+17)'=5x⁴+sinx F'(x)=f(x) для всех х∈(-∞;+∞) Следовательно, F(x) есть первообразная для f(x). Что и требовалось доказать
ali13zakup5064
05.01.2020
-7==-6==-5==-4==-3==-2==-1==0==1==2==3==4==5==6==7 Кузнец добрыгивает до 7 влево и вправо то есть -7 и 7 есть точки Пусть он прыгает 6 вправо или лево - теперь он может прыгнуть в -7 или 7 или в -5 и 5 Пусть прыгает до 5 оттуда может 6-м прыжком прыгнуть в 6 или -6 (здесь мы знаем) или 4 и -4 отсюда в 3 или -3 До 4-х прыгает отвюда может попасть в (5 -5 тут знаем) или -3 и 3 то есть модет прыгнуть туда - сюда это будет -3 и 3 или два прыжка на 1 и -1 То есть точки -7 -5 -3 -1 1 3 5 7 может допрыгать (8 точек) В четные попость не может, допрыгать до четной на четное количество прыжков а у нас 7 нечетное
3x - 5y = - 23
Решение сложения
4х + 3х + 5y - 5y = 16 - 23
7x = - 7
X = - 1
3•( - 1 ) - 5y = - 23
- 5y = - 23 + 3
- 5y = - 20
y = 4
ответ ( - 1 ; 4 )