Пусть первое число х+1, тогда сумма 2015 последовательных чисел (x+1) + (x+2) + (x+3) + ... + (x+2015) = 2015x + (1+2+3+...+2015) = = 2015x + (1+2015)*2015/2 = 2015*(x + 2016/2) = 2015*(x+1008) Если х четное, то х+1008 тоже четное, и сумма кончается на 0. Если х нечетное, то х+1008 тоже нечетное, и сумма кончается на 5. Сумма следующих 2019 чисел (x+2015+1) + (x+2015+2) + (x+2015+3) + ... + (x+2015+2019) = = (x+2016) + (x+2017) + (x+2018) + ... + (x+4034) = = 2019*(x+2015) + (1+2+3+...+2019) = 2019*(x+2015) + (1+2019)*2019/2 = = 2019*(x+2015+2020/2) = 2019*(x+2015+1010) = 2019*(x+3025) Если x кончается 0 (четное), то это число кончается 5, а первое 0. Если x кончается 5 (нечетное), то это кончается 0, а первое 5. Если x кончается на любую другую цифру, то число кончается не 0 и не 5. Вывод: нет, не может.
ak74-81
11.12.2022
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при . Поэтому . Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) . А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае . ответ: уравнение имеет одно решение при а=2 и а=3; уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ; уравнение не имеет решений при а∈(2,3) .
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите углы параллелограмма abcd, если угол a + угол c = 142 градуса
ABCD-парал.
уг.A+ угол С =142 градуса.
Наути: уг.A,уг.B,угС ,угD
решение:
1)уг.В=уг.D, уг=А =уг.с(по свойству парал) след
уг.A+ угол С =142 градуса.
2х=142
х=71 гр след.
уг.а=71=уг.с
2) сумма прилеж угл =180 гр(по свойству)след
угВ,уг D=180-71=109
ответ:угВ,уг D=109 гр;уг.а,уг.с =71 гр