Евгеньевич Балиловна1398
?>

Точка c лежит на прямой ab и разделяет точки a и b. длина отрезка ac в три раза меньше отрезка ab. найдите длину отрезка ac, если отрезок cb равен 8 см.

Алгебра

Ответы

amaraks67

         4 см

Объяснение:

Пусть АС = х см, тогда АВ = 3х см.

АВ - АС = СВ

3х - х = 8

2х = 8

х = 8 : 2

х = 4

АС = 4 см


Точка c лежит на прямой ab и разделяет точки a и b. длина отрезка ac в три раза меньше отрезка ab. н
maximovpavel9114
ВвоыоФункция arcsin(x) обозначает угол, синус которого равен х.
Это можно записать математически: sin(arcsin(x))=x.
Справедливо и обратное: arcsin(sin(x))=x.
Функция arcsin(x) - нечетная, как и обратная ей функция sin(x).
Это значит, что arcsin(-x) = - arcsin(x).
Поэтому
arcsin(-3/4) = -arcsin(3/4).
В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
Viktoriya

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Точка c лежит на прямой ab и разделяет точки a и b. длина отрезка ac в три раза меньше отрезка ab. найдите длину отрезка ac, если отрезок cb равен 8 см.
Ваше имя (никнейм)*
Email*
Комментарий*