david-arustamyan1
?>

Найдите значения выражения а-b если а полуразность чисел 68, 56 и 25, 3 а b удвоенная сумма чисел 2, 405 и 3, 41

Алгебра

Ответы

myrisik2490
A-b
a= (68,56-25,3):2=21,63
b=(2,405+3,41)•2=11,63
21,63-11,63=10
ответ: значение выражения a-b равно 10
denspiel
2) х-sinx
-x-sin(-x)=-x+sinx=-(x-sinx)
нечетная
3) x^2-cosx
(-х)²-сos(-x)=x²-cosx
четная
4) x^3+sinx
(-x)³+sin(-x)=-x³-sinx=-(x³+sinx)
нечетная
5) 1-cosx/1+cosx
(1-сos(-x))/(1+cos(-x))=(1-cosx)/(1+cosx)
четная
6) tgx+1/tgx-1
tg(-x)+1)/(tg(-x)-1)=(-tgx+1)/(-tgx-1)=[-(tgx-1)]/[-(tgx+1)]=(tgx-1)/(tgx+1)
ни четная,ни нечетная
7) x+sinx/x-sinx
(-x+sin(-x))/(-x-sin(-x))=(-x-sinx)/(-x+sinx)=[-(x+sinx)]/[-(x-sinx)]=
=(x+sinx)/(x-sinx)
четная
8) x^2-sin^2x/1+sin^2x
[(-x)²-sin²(-x)]/[1+sin²(-x)]=(x²-sin²x)/(1+sin²x)
четная
ilkindadashov935232
D(y)=[-2;+∞)- область определения данной функции.
Cоставим уравнение касательной к кривой в точке z
y(z)=√(z+2);
y`(x)=1/2√(x+2)
y`(z)=1/2√(z+2)
Уравнение
у-у(z)=y`(z)(x-z)
y-√(z+2)=(x-z)/2√(z+2)
Найдем точки пересечения касательной с осями координат
При х=0  у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2)
При у=0  x-z=-2(z+2)  ⇒x=-z-4
Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4|  и |(z+4)/2√(z+2)|
Площадь прямоугольного треугольника находим по формуле как  половину произведения катетов:
S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2)
S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2)
S`(z)=0
3z+4=0
z=-4/3
y(-4/3)=√((-4/3)+2)=1/√3
О т в е т.(-4/3; 1/√3)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значения выражения а-b если а полуразность чисел 68, 56 и 25, 3 а b удвоенная сумма чисел 2, 405 и 3, 41
Ваше имя (никнейм)*
Email*
Комментарий*