34
Объяснение:
пусть первое число 2n
а второе 2n+2
2n(2n+2)≤300
4n²+4n-300≤0 разделим на 4
n²+n-75≤0
решим методом интервалов
n²+n-75=0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 1 - 4·1·(-75) = 1 + 300 = 301
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x₁= (-1 - √301)/ 2 ≈ -9.1747
x₂ = ( -1 + √301)/ 2 ≈ 8.1747
по свойству квадратичной функции т.к. старший коэффициент квадратного уравнения равен 1 и 1>0 ветки направлены вверх
тогда решением неравенства будет область между корнями
(x₁)(x₂)>
+ - +
n²+n-75≤0 при х∈[x₁;x₂]
так как нам требуется максимально возможная сумму последовательных четных чисел то выбираем наибольшее положительное четное число из интервала [x₁;x₂] что приближенно равно [-9.1 ;8,1]
это число n=8
тогда 2n=2*8=16 первое число
2n+2=16+2=18 второе число
16*18=288≤300
16+18=34 это максимально возможная сумма последовательных четных чисел, произведение которых не превышает 300
Поделитесь своими знаниями, ответьте на вопрос:
П'ятий і дев'ятий члени ї прогресії дорівнюють відповідно 165 і 5/3. знайдіть члени послідовності, що містяться між даними числами.
Объяснение:
Обозначим недостающие члены:
b(6)=x; b(7)=y; b(8)=z.
По формуле геометрической прогрессии считаем:
х=√(165y); y=√(xz); z=√((5/3)y)
Следовательно:
у=√(165•5/3)=√(55•5)=√(11•5•5)=5√11
х=√(165•5√11)=√(33•5•5√11)=5√(33√11)
z=√((5/3)•5√11)=5√((√11)/3)
ответ: b(6)=5√(33√11); b(7)=5√11; b(8)=5√((√11)/3)