11 в любой степени кончается на 1. 19 в нечетной степени кончается на 9.
Их сумма кончается на 1+9=10, то есть на 0, а значит, делится на 5.
Осталось доказать, что это число делится на 3.
11=3*3+2; 11^2019 = (3*3+2)^2019 = 2^2019.
Здесь и дальше знак = означает "такой же остаток при делении на 3".
2^2019 = (2^3)^673 = 8^673 = 2^673 = 2^3*2^670 = 8*(2^10)^67 = 2*1024^67 =
= 2*(3*341+1)^67 = 2*1^67 = 2
Таким образом, 11^2019 имеет при делении на 3 остаток 2.
19 = 3*6+1; 19^2019 = (3*6+1)^2019 = 1^2019 = 1.
Таким образом, 19^2019 имеет при делении на 3 остаток 1.
Сумма этих чисел имеет остаток 2+1=3, то есть делится нацело.
Что и требовалось доказать.
Рассмотрим несколько случаем. На месте четной цифры мы будем писать Ч, на месте нечетной - Н. Тот факт, что число нечетное, означает, что последняя цифра у числа нечетная.
1) Число имеет вид ЧЧН. Поскольку на первом месте не может стоять 0, на первое место претендуют 3 цифры - 2, 4, 6. На второе место претендуют 4 цифры - 0, 2, 4, 6 (а если цифры не должны повторяться, то 3 цифры). На третье место претендуют 4 цифры - 3, 5, 7, 9.
Всего получается 3·4·4=48 чисел (при второй интерпретации условия 3·3·4=36 чисел).
2) ЧНН. Здесь аналогично получается 3·4·4=48 чисел (или 3·4·3=36).
3) НЧН. Здесь 4·4·4=64 чисел (или 4·4·3=48).
4) ННН. Здесь 4·4·4=64 числа (или 4·3·2=24)
Суммарно получаем 48+48+64+64=224 чисел - если повторения цифр допускаются (или 36+36+48+24= 144 чисел если все цифры должны быть разные).
Замечание. Если цифры могут совпадать, задачу можно сделать проще . На первом место может стоять любая из цифр, кроме 0 - всего 7 вариантов. На втором месте может стоять любая цифра - всего 8 вариантов. На третьем месте может стоять любая из нечетная цифра - 4 варианта. Всего получаем 7·8·4=224 числа.
ответ: 224 чисел, в которых возможно совпадение цифр, и 144 числа, в которых все цифры разные.
Поделитесь своими знаниями, ответьте на вопрос:
Решить уравнения : 5/6x=-30 1, 6-0, 08y=0 7, 6-3x=4, 1+2x