ответ:Данный урок мы посвятим решению типовых задач на построение графика функции . Вспомним определение квадратного корня.
Определение. Квадратным корнем из неотрицательного числа называется такое неотрицательное число , квадрат которого равен .
.
Изобразим график – это правая ветвь параболы (рис. 1).
Рис. 1.
На графике наглядно виден смысл вычисления квадратного корня. Например, если рассмотреть ординату 16, то ей будет соответствовать абсцисса 4, т. к. . Аналогично, ординате 9 на графике соответствует точка с абсциссой 3, поскольку , ординате 11 соответствует абсцисса , т. к. (квадратный корень из 11 не извлекается в целых числах).
Теперь вспомним график функции (рис. 2).
Рис. 2.
На графике для наглядности изображены несколько точек, ординаты которых вычисляются с извлечения квадратного корня: , , .
Примеры на преобразование графиков с корнями
Пример 1. Постройте и прочтите график функции: а) , б) .
Решение. а) Построение начинается с простейшего вида функции, т. е. в данном случае с графика (пунктиром). Затем для построения искомого графика график функции необходимо сдвинуть влево на 1 (рис. 3). При этом все точки графика сдвинутся на 1 влево, например, точка с координатами (1;1) перейдет в точку с координатами (0;1). В результате получаем искомый график (красная кривая). Проверить такой легко при подстановке нескольких значений аргумента.
Рис. 3.
Прочтем график: если аргумент меняется от до , функция возрастает от 0 до . Область определения (ОДЗ) при этом требует, чтобы подкоренное выражение было неотрицательным, т. е. .
б) Для построения графика функции поступим аналогичным образом. Сначала строим график (пунктиром). Затем для построения искомого графика график функции необходимо сдвинуть вправо на 1 (рис. 4). При этом все точки графика сдвинутся на 1 вправо, например, точка с координатами (1;1) прейдет в точку с координатами (2;1). В результате получаем искомый график (красная кривая).
Рис. 4.
Прочтем график: если аргумент меняется от до , функция возрастает от 0 до . Область определения (ОДЗ) аналогична предыдущему случаю: .
Замечание. На указанных примерах несложно сформулировать правило построения функций вида:
.
Пример 2. Постройте и прочтите график функции: а) , б) .
Решение. а) Этот пример также демонстрирует преобразование графиков функций, но только уже другого типа. Начинаем построение с простейшей функции (пунктиром). Затем график построенной функции смещаем на 2 вверх и получаем на рисунке 5 искомый график (красная кривая). Точка с координатами (1;1) при этом, например, переходит в точку (1;3).
Рис. 5.
Прочтем график: если аргумент меняется от 0 до , функция возрастает от 2 до . Область определения (ОДЗ): .
б) Также начинаем построение с простейшей функции (пунктиром). Затем график построенной функции (рис. 6) смещаем на 1 вниз и получаем искомый график (красная кривая). Точка с координатами (1;1) при этом, например, переходит в точку (1;0).
Номер 463.
1) -7. Взять -7 мы можем, т.к. по условию оно нам подходит.
2) -4. Взять -3,7 не можем, т.к. нам по условию надо выбрать целое число.
3) 4. Взять 4,8 не можем, т.к. нам по условию надо выбрать целое число.
4) -6. Взять -5,6 не можем, т.к. нам по условию надо выбрать целое число.
Номере 464.
1) -11. Взять -11,9 не можем, т.к. нам по условию надо выбрать целое число.
2) -5. Взять -5,2 не можем, т.к. нам по условию надо выбрать целое число.
3) 9. Взять 8,1 не можем, т.к. нам по условию надо выбрать целое число.
4) -8. Взять -8,1 не можем, т.к. нам по условию надо выбрать целое число.
Поделитесь своими знаниями, ответьте на вопрос:
Запишите в виде степени: 1) а⁵×а³= 2) (х⁵)²= 3) у⁷ - = у
2) (y⁵)² = y⁵*² = y¹⁰
3) у⁷/y = y⁷⁻¹ = y⁶