ynikolaev2657
?>

Перетворити у звичайний дріб 1) 0, 02(76) 2) 0, 4(2)

Алгебра

Ответы

GridnevaVNIGNI"

1.

 \frac{276 - 2}{9900} = \frac{274}{9900} = \frac{137}{4950} \\ \\

2.

 \frac{42 - 4}{90} = \frac{38}{90} = \frac{19}{45}

BekturMagometovich189

пример.рассмотрим следующую линейную функцию: y = 5x – 3.

1) d(y) = r;

2) e(y) = r;

3) функция общего вида;

4) непериодическая;

5) точки пересечения с осями координат:

ox:   5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.

oy:   y = -3, следовательно (0; -3) – точка пересечения с осью ординат;

6) y = 5x – 3 – положительна при x из (3/5; +∞),

y = 5x – 3 – отрицательна при x   из (-∞; 3/5);

7) y = 5x – 3 возрастает на всей области определения; линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.

в частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси ox, проходящая через точку с координатами (0; b).

если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

смысл коэффициента b – длина отрезка, который отсекает прямая по оси oy, считая от начала координат.

смысл коэффициента k – угол наклона прямой к положительному направлению оси ox, считается против часовой стрелки.

свойства линейной функции:

1) область определения линейной функции есть вся вещественная ось;

2) если k ≠ 0, то область значений линейной функции есть вся вещественная ось. если k = 0, то область значений линейной функции состоит из числа b;

3) четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) свойством периодичности линейная функция не обладает;

5) точки пересечения с осями координат:

ox:   y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

oy:   y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

замечание.если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) промежутки знакопостоянства зависят от коэффициента k.

a) k > 0;   kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x   из (-b/k; +∞),

y = kx + b – отрицательна при x   из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x   из (-∞; -b/k),

y = kx + b – отрицательна при x   из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

8) графиком линейной функции является прямая. для построения прямой достаточно знать две точки. положение прямой на координатной плоскости зависит от значений коэффициентов k и b. 

annarom1306
  (2-√2)(2-√2-√3)       (2-√2)²-√3(2-√2)     4+2-4√2-2√3+√6 = = (2-√2)(2+√2-√3)       4-2-√3(2-√2)           [ 6-√3(2-√2)][6+√3(2-√2)] числитель и знаменатель умножаем на 6+√3(2-√2)   числитель нас не интересует, а знаменатель равен 36-3(4-2-4√2)=30-12√2 и повторяем умножая числитель и знаменатель на 30+12√2     в знаменателе 900-144*2=900-288=612     = 2+√2-√3      

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Перетворити у звичайний дріб 1) 0, 02(76) 2) 0, 4(2)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Vip2002www86
Полковников_Милана
lshimina65
nuralievelsh
EVLAMPIN56
gassvetlana
ekattatarenko
gbelihina
dpolkovnikov
MDubovikov73
sdvigov
dmdlir
samuilik-v
d2904
infooem