
Дана функцию f(x) = (x² - 3x) / (x - 4 ).
1 ) Найдите наибольшее и наименьшее значения функции на данном промежутке [-1; 3].
2 ) Найдите промежутки возрастания и убывания и точки экстремума функции .
ответ: 1 ) наибольшее 1 ; наименьшее - 0,8 .
2 )
Функция возрастает: x ∈( -∞ ; 2 ] и x ∈[ 6 ;∞) .
Функция убывает x∈[2 ; 4) и x ∈(4 ;6] ;
Точки экстремумов: x =2 точка максимума и x = 6 точка минимума .
Объяснение: D(f) : ( - ∞ ; 4) ∪ (4 ; ∞ ) [ R \ {4 } ]
( u(x) /v(x) ) ' = ( u'(x)*v(x) - u(x)*v'(x) ) / v²(x)
f ' (x) = ( (x² - 3x) / (x - 4 ) ) ' =( (x² - 3x) ' *(x - 4 ) - (x² - 3x)*(x-4) ' ) / (x-4)² =
( (2x - 3)*(x - 4 ) - (x² - 3x)* 1 ) / (x-4)² = (x² - 8x +12) / (x-4)² =(x-2)(x-6) / (x-4)².
f ' (x) = 0 ⇔(x-2)(x-6) / (x-4)² =0 ⇒ x₁ =2 , x₂ = 6 .
f'(x) не существует в точке x =4 , но в этой точке не существует и функция
1)
* * * x₂ = 6 ∉ [ -1 ; 3 ] * * *
x₁=2 ∈ [ -1 ; 3 ] f (x₁ ) =f (2 ) =(2² -3*2) /(2 - 4) = 1 ;
f (a ) =f (-1 ) =( (-1)² -3*(-1) ) /( (-1) - 4) = - 4/5 = - 0,8 ;
f(b) = f(3) = (3² - 3*3) /(3 -4) = 0
На промежутке [-1;3] наибольшее значение функции равно 1 (если x=2 ), наименьшее значение -0,8 (если x= - 1 ) .
2)
Промежутки возрастания и убывания и точки экстремума функции .
f ' (x) = 0 ⇔(x-2)(x-6) / (x-4)² =0 ⇒ x₁ =2 , x₂ = 6 .
Функция возрастает , если f ' (x) ≥ 0
Функция убывает , если f ' (x) ≤ 0
По методу интервалов
f '(x ) + + + + + + + + + + [ 2 ] - - - - - - - - - - [ 6] + + + + + + +
f (x ) ↑ (возрастает) ↓ (убввает) ↑ (возрастает)
Функция возрастает: x ∈( -∞ ; 2 ] и x ∈[ 6 ;∞) .
Функция убывает x∈[2 ; 4) и x ∈(4 ;6] .
x =2 и x=6 точки экстремумов ( производная функции меняет знак при прохождения через эти точки )
x =2 точка максимума , f(2) = 1
x =6 точка минимума , f(6)=(6² -3*6) /(6 - 4) =(36-18)/ 2=9.
1. 2x2+3x+19 = 0
D= b2 - 4ac
D=9 - 4*2·19 = -143
2. 26х2+5х+10=0
D= b2 - 4ac
D= 25 - 4*26*10 = -1015
D<0 корней нет
3. x2+8x+15=0
D= b2 -4ac
D= 64 - 4*15= 4
x1= -b+√D / 2a = -8 +2 / 2*1 = -6/2 = -3
x2= -b - √D / 2a = -8 - 2 / 2*1 = -10/2 = -5
4. 4x2−14x+6=0
D= b2 - 4ac
D= 196 - 4*4*6 = 100
x1= -b+√D / 2a = 14 + 10 / 2*4 = 24/8 = 3
x2= -b - √D / 2a = 14 -10/ 2*4 = 4/8 = 1/2
5. 6x2+6x+15=0
D= b2 - 4ac
D= 36 - 4*6*15 = -324
6. 2x2+19x+1=0
D= b2 - 4ac
D= 361 - 4*2*1 = 353
D>0 2 корня
7. x2+8x+16=0
D= b2 - 4ac
D= 64 - 4*16 = 0
x= -b+ √D / 2a = -8+0 / 2*1 = -8/2 = -4
8. 2x2−7x+6=0
D= b2 - 4ac
D= 49 - 4*2*6 = 1
x1= -b+√D / 2a = 7 +1/ 2*2 = 8/4 = 2
x2= -b - √D / 2a = 7 -1/ 2*2 = 6/4 = 3/2 = 1 1/2
Поделитесь своими знаниями, ответьте на вопрос:
Основание степени одинаковые, показатели вычитаются (1-1/3=2/3)
Будет 7 в степени 2/3 или корень третьей степени из 7 в квадрате.