shumilovs7252
?>

Вычеслите корень 1 + корень 4 + корень 9 - корень 16 +корень 0

Алгебра

Ответы

deadnobody
= 1 + 2 + 3 + 4 + 0 = 10
beast05031075
Решение:
1+2+3-4-0=2
ответ:2
kireevatatiana
1) (Х + 2)*(x - 2)/ (Х - 1)(x - 2) = (x² - 4) / (Х - 1)(x - 2) = (x² - 4) / (x² - 3x + 2)
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
 Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3)  (3 + Х)(x - 3) / (Х - 5)(x - 3) =  (x² - 9) /  (Х - 5)(x - 3) =  (x² - 9) / (x² - 8x + 15)
 Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4)  (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4) 
x (4 + Х) / x( x² - 4) 
vallihhh
1)    ;
sin2x - (1-sin²x)  =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.

2)   ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0  * * *cos2x = ± 1 ≠0→ ОДЗ * * * 
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .

3)   ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.

4)  ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ;  * * * α = 3x  * * *
cos3x = 2cos²3x ; 
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычеслите корень 1 + корень 4 + корень 9 - корень 16 +корень 0
Ваше имя (никнейм)*
Email*
Комментарий*