Объяснение:
a + b = 5; ab = 3
a^3*b^2 + a^2*b^3 = a^2*b^2*(a+b) = (ab)^2*(a+b) = 3^2*5 = 9*5 = 45
(a-b)^2 = a^2 + b^2 - 2ab = a^2 + 2ab + b^2 - 4ab = (a+b)^2 - 4ab = 5^2 - 4*3 = 13
a^4 + b^4
Здесь сложнее. Сначала найдем
a^2 + b^2 = a^2 + 2ab + b^2 - 2ab = (a+b)^2 - 2ab = 5^2 - 2*3 = 19
Теперь найдем
(a^2 + b^2)^2 = a^4 - 2a^2*b^2 + b^4 = a^4 + b^4 - 2(ab)^2
a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2
Но мы знаем, что
(a^2 + b^2)^2 = 19^2 = 361.
Отсюда
a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2 = 19^2 + 2*3^2 = 361 + 18 = 379
770 кг/м^3 плотность бумаги, то есть плотность бумаги выше
Объяснение:
Разъяснение по действиям
1) приведём все единицы измерения к метрам и килограммам. Меньше будет путаница и огромных чисел в дальнейшем
2-3) находим вес пачки бумаги. Сначала ищем площадь одного листа, затем множим на число листов в пачке и находим общую площадь всей бумаги в одной упаковке. Далее находим вес пачки бумаги исходя из площади всей пачки. Вес запоминаем, она нам понадобится.
4) для определения плотности нам нужны вес и объём бумаги. Вес мы нашли. Объём находим перемножив размеры листа на толщину упаковки. Также запоминаем
5) плотность древесины нам дана на 1 кубический метр, а объём пачки гораздо меньше, поэтому мы через пропорцию находим сколько будет весить 1 кубический метр данной нам бумаги. Заодно это число и будет плотностью нашей бумаги.
6) остаётся только сравнить плотность бумаги и древесины. Плотность бумаги выше на 110 кг/м^3
Поделитесь своими знаниями, ответьте на вопрос:
докажите, что при любом значении "a" верно неравенство .4а^2+1 ≥4а