Введите задачу...
Основы мат. анализа Примеры
Популярные задачи Основы мат. анализа Найти область определения и область значения y=1/(x^2-9)
y
=
1
x
2
−
9
Приравняем знаменатель в
1
x
2
−
9
к
0
, чтобы выяснить, где не определено данное выражение.
x
2
−
9
=
0
Решим относительно
x
.
Нажмите, чтобы увидеть больше шагов...
x
=
3
,
−
3
Областью определения являются все значения
x
, которые делают выражение определенным.
Запись в виде интервала:
(
−
∞
,
−
3
)
∪
(
−
3
,
3
)
∪
(
3
,
∞
)
Нотация построения множества:
{
x
|
x
≠
3
,
−
3
}
Область значений - это набор всех допустимых значений
y
. Используйте график для определения области значений.
Запись в виде интервала:
(
−
∞
,
−
1
9
]
∪
(
0
,
∞
)
Нотация построения множества:
{
y
∣
∣
∣
y
≤
−
1
9
,
y
>
0
}
Определяем область определения и область значений.
Область определения:
(
−
∞
,
−
3
)
∪
(
−
3
,
3
)
∪
(
3
,
∞
)
,
{
x
|
x
≠
3
,
−
3
}
Область значений:
(
−
∞
,
−
1
9
]
∪
(
0
,
∞
)
,
{
y
∣
∣
∣
y
≤
−
1
9
,
y
>
0
}
Поделитесь своими знаниями, ответьте на вопрос:
Умоляю ! 1.дана функция f(x)=x3-x2-5x-3. найти промежутки возрастания и убывания функции; экстремумы функции; наибольшее и наименьшее значения функции на промежутке -2; 1. 2.дана функция f(x)=x3-x2-x. найти промежутки возрастания и убывания функции; экстремумы функции; наибольшее и наименьшее значения функции на промежутке 0; 2.
Для того, чтобы упростить выражение xy(x + y) - (x^2 + y^2)(x - 2y) откроем скобки и выполним приведение подобных слагаемых.
Для открытия первой скобки используем распределительный закон умножения относительно сложения a * (b + c) = a * b + a * c.
Для открытия второй скобки используем правило умножения скобки на скобку, а так же правило умножения скобки на скобку.
xy(x + y) - (x^2 + y^2)(x - 2y) = x^2y + xy^2 - (x^3 - 2x^2y + xy^2 - 2y^3) = x^2y + xy^2 - x^3 + 2x^2y - xy^2 + 2y^3 = 3x^2y - x^3 + 2y^3.
Объяснение: