Я, конечно, не уверен, но, вроде, все правильно сделал
brakebox
29.11.2020
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Что и требовалось доказать.
sastakhova
29.11.2020
Решение: Надеюсь я правильно поняла, что надо найти сумму 4-х членов убывающей геометрической прогрессии
Сумма бесконечно убывающей прогрессии находится по формуле: Sn=b1(1-q^n) /(1-q) 1. Найдём q q=b4 : b3=0,16 :0,8=0,2 2. Найдём b1 из формулы: bn=b1*q^(n-1) b3=b1*q^(3-1) Подставим в эту формулу известные нам данные: 0,8=b1*0,2^2 0,8=b1*0,04 b1=0,8 : 0,04=20 Отсюда: S4=20*(1-0,2^4)/(1-0,2)=20*(1-0,0016)/0,8=20*0,9984/0,8=19,968/0,8=24,96