Пусть 5ab исходное число, ab5 новое число. По условию задачи ab5> 5ab на 279, получим ab5-5ab=279 ab5 начинаем рассуждать: из 5 нужно вычесть число, чтобы - получилось 9. Этого сделать нельзя, поэтому занимаем 5ab десяток у b. Тогда 15-6=9, значит b =6. теперь b=6, и у b заняли десяток, значит из 5 вычитаем 279 число и получаем 7. Опять невозможно и занимаем у a десяток. Получаем , 15-8=7, значит a=8. В самом деле у a заняли десяток, осталось 7. 7-5=2 верно. Значит, исходное число 586
alekseev13602
06.09.2020
1)корень(5х+9) =2х.Надо возвести в квадрат обе части уравнения. 5х + 9 = 4х². Получаем квадратное уравнение. 4х² - 5х - 9 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-5)^2-4*4*(-9)=25-4*4*(-9)=25-16*(-9)=25-(-16*9)=25-(-144)=25+144=169; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√169-(-5))/(2*4)=(13-(-5))/(2*4)=(13+5)/(2*4)=18/(2*4)=18/8=2.25; x_2=(-√169-(-5))/(2*4)=(-13-(-5))/(2*4)=(-13+5)/(2*4)=-8/(2*4)=-8/8=-1. Второй (отрицательный) корень отбрасываем - в задании даётся положительное значение корня. ответ: х = 18/8 = 9/4 = 2,25.
2)(1/7)степень7-x =49. Выражение (1/7)^(7-x) равносильно 7^(x-7) по свойству (1/а) = а^(-1). Тогда 7^(x-7) = 7². Отсюда х - 7 = 2 х = 2 + 7 = 9. ответ: х = 9.
3)lоg внизу5 ×(7-x)=2 Логарифм - это показатель степени основания. То есть 5² = 7 - х Отсюда х = 7 - 25 = -18. ответ: х = -18.
----------------------