tofilev
?>

5sin(π/2+a)-sin(3/2*π+x)-8cos(2π-x)=1

Алгебра

Ответы

vusokaya13
Вот......................
5sin(π/2+a)-sin(3/2*π+x)-8cos(2π-x)=1
ЕленаГерасимова
Взвести одночлен к стандартному виду, указать его степень:
1) 8у²у³у
2)7х*0,1у*2z
3)5b * (-3ab)
4)-2 \frac{2}{3}m^4*9mn^3
5)-3a²*0,2ab^{4}*(-10b)
6) x³·(y)³·x
Решение:
Эти одночлены можно упростить, используя переместительный и сочетательный закон умножения и правила действий со степенями.
1) 8y^{2}y^{3}y = 8y^{2+3+1} =8y^{6}
Степень одночлена равна показателю степени у : 6
2)7х·0,1у·2z =7·0,1·2xyz = 1,4xyz
Показатель степени x равен 1, показатель у равен 1, показатель z равен 1.  Степень одночлена равна сумме этих показателей: 1+1+1=3.
3) 5b * (-3ab) =5*(-3)ab² = -15ab²
Показатель степени а равен 1, показатель b равен 2.
Степень одночлена равна сумме этих показателей: 1+2=3.
4)-2 \frac{2}{3}m^4*9mn^3 =-\frac{8}{3}*9m^{4+1}n^3=-27m^{5}n^{3}
Показатель степени m равен 5, показатель n равен 3.
Степень одночлена равна сумме этих показателей: 5+3=8.
5)-3a^2*0,2ab^4*(-10b)=(-3)*0,2*(-10)*ab^{4+1}=6ab^4
Показатель степени a равен 1, показатель b равен 4.
Степень одночлена равна сумме этих показателей: 1+4=5.
6)x^3*y^3*x=x^{3+1}*y=x^4y
Показатель степени x равен 4, показатель y равен 1.
Степень одночлена равна сумме этих показателей: 4+1=5.
Александровна1742

a=4

(2;1)

Объяснение:

Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.

 

Получим:

ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.

 

При таком значении коэффициента a данная система примет вид:

{4x+3y=115x+2y=12

 

Для решения этой системы уравнений  графически построим в одной координатной плоскости графики каждого из уравнений.

Графиком уравнения 4x+3y=11 является прямая.

 

Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.

 

x −1 2

y 5 1

 

Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.

Графиком уравнения 5x+2y=12 также является прямая.

 

Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.

 

x 0 2

y 6 1

 

Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.

 

Получим:

 

Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

5sin(π/2+a)-sin(3/2*π+x)-8cos(2π-x)=1
Ваше имя (никнейм)*
Email*
Комментарий*