oxy03214428
?>

Решите уравнение: а)1-1, 7х-(0, 8х+2)=3, 4 б)5-0, 2у=0, 3у-39. пож .пож.пож.!

Алгебра

Ответы

Артем Уберт
А) 1-1.7x-0.8x-2=3.4
-2.5x=4.4
x=1.76
б) -0.5y=-44
y=88
lenapopovich556510
Многое в поставленной вами задачи зависит от того Какие значения может 
принимать Х изменяясь в своей области определения . Кроме того важно 
сразу отметить что если вы ищете аналитическую закономерность (виде 
некоторой формулы) то её может и не быть. 

Если множество значений Х дискретно то можно использовать 
любой из стандартных методов интерполяции : линейную, дробно- 
линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д 

Приведу пример нахождения интерполяционного многочлена Тейлора 
по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; 
многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- 
подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 
а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: 
P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; 
P(X2)=1+A1*1+A2*1*1=2 
P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк 
Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 
Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости 
между X и Y. Естественно этот результат не единственен. 
Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов» 
modellisimo-a

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение: а)1-1, 7х-(0, 8х+2)=3, 4 б)5-0, 2у=0, 3у-39. пож .пож.пож.!
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

u-bhank
Долбоебков_Алексей27
Запишите число в стандартном виде 48, 16
gostivdom302
samira57
osirparts7854
Vasilevna_Mikhail19
Butsan-Bagramyan
kisuhakisa
gavrilasmax05
ksoboleva
БеляковаСтаниславовна
Решите систему неравенств
Антон-Марина
Dmitrii_Shamilevich2019
compm
migreen