Угол φ между двумя прямыми, заданными уравнениями c угловыми коэффициентами
y=k₁x+b₁ y=k₂x+b₂, вычисляется по формуле: tgφ=(k₂-k₁)/(1+k₁*k₂)
а) y=-3х/4-1 и y=3х/4 +2
tgφ=(3/4+3/4)/(1-9/16)=3*16/(2*7)=24/7=3 3/7
б) 2y+3x-1=0 и 3y+2x-5=0; у=-3х/2 -1/2и у=2х/3 +5/3;
tgφ=(2/3+3/2)/(1-(3*2)*(2/3)); tgφ=∞; φ=90°
в) x = 1 и y = -2x + 1;
cosφ=(1*2+0*1)/(√1*√5)=2/√5; sinφ=√(1-4/5)=1/√5; tgφ=(1/√5):(2/√5)=1/2
г) x = -3 и 3x + 2y - 3 = 0
cosφ=(1*3+0*2)/(√1*√(3²+2²))=3/√13; sinφ=√(1-9/13)=2/√13;
tgφ=(2/√13):(3/√13)=2/3
91
Объяснение:
Какое наименьшее количество различных трехзначных чисел нужно взять, чтобы среди них наверняка было бы одно число, оканчивающееся НЕ на нуль - на одно больше чем количество различных трехзначных чисел оканчивающееся на нуль
Найдем количество различных трехзначных чисел оканчивающееся на нуль, последняя цифра 0 (1 вариант выбора), первая любая цифра от 1 до 9 (9 вариантов выбора), вторая - любая цифра от 0 до 9 (10 вариантов выбора), по правилу умножения событий, получаем что всего таких чисел 9*10*1=90
а значит нужно 91 число (90+1=91)
Поделитесь своими знаниями, ответьте на вопрос:
Система уравнений: 4x+15y= -42 -6x+25y= -32 p. s: поподробнее плз