2,5 (часа) пароход по течению реки.
1,5 (часа) пароход против течения реки.
Объяснение:
Пароход по течению реки и против течения путь 68 км за 4 часа. Сколько времени он двигался против течения и по течению реки (отдельно), если по течению он двигался со скоростью 20 км / ч, а против течения - 12 км / ч?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние по течению
у - расстояние против течения
х/20 - время по течению
у/12 - время против течения
По условию задачи составляем систему уравнений:
х+у=68
х/20 + у/12 =4
Преобразуем второе уравнение, умножим его на 240, чтобы избавиться от дроби:
12х+20у=960/4 для упрощения:
3х+5у=240
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=68-у
3(68-у)+5у=240
204-3у+5у=240
2у=240-204
2у=36
у=18 (км) - расстояние против течения.
х=68-у
х=68-18
х=50 (км) - расстояние по течению.
Скорость по течению и против течения известны, можем вычислить время:
50/20=2,5 (часа) пароход по течению реки.
18/12=1,5 (часа) пароход против течения реки.
ответ:
объяснение:
сделаем замену:
откуда:
уравнение примет вид:
домножим обе части уравнения на 256 и сделаем замену m = 4y;
, где t - такое число, которое сворачивает правую часть в полный квадрат. его следует найти, рассмотрев квадратный трехчлен относительно m и найдя его дискриминант и приравняв его к нулю:
- корень. значит, можно разделить данный трехчлен на (t - 42), получим:
очевидно, второй множитель не имеет действительных решений. значит, t = 42. напомню, что это такое число, при котором правая часть - полный квадрат. подставим его.
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть ненульовий корінь рівняння x^5=0.008x^2
х5=0,008х2
х5-0,008х2=0
х2(х3-0,008)=0
х3-0,008=0
х3=0,008
х=0,2=1/5